期刊文献+

构造从字符串到Huff曲线的散列函数

Constructing hash function from plaintext to Huff curves
在线阅读 下载PDF
导出
摘要 首次构造了从有限域Fq到Huff曲线的确定函数,其时间复杂性为O(log3q).在此基础上构造了从字符串到Huff曲线的散列函数.该散列函数的构造为基于身份协议的构造奠定了基础.其在中国椭圆曲线密码算法标准SM2推荐的素域上的运行时间为557.8μs. A deterministic function with its time complexity being O(log^3q) was constructed for the first time from a finite field Fq to Huff curves. Based on this function, construct a hash function from plaintext into Huff curves. The Hash function laid the foundation for identity-based protocols on elliptic curves and its experimental time cost on the elliptic curve of the Chinese elliptic curve standard SM2 is 557.8 μs.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第10期835-838,共4页 JUSTC
基金 国家重点基础研究发展(973)计划(2013CB338001) 中国高技术研究发展(863)计划(2013AA014002) 国家自然科学基金(61272040 61070171) 中国科学院战略性先导专项(XDA06010702)资助
关键词 散列函数 Huff曲线 能量攻击 SM2 Hash function Huff curve power analysis SM2
  • 相关文献

参考文献21

  • 1Koblitz N. Elliptic curve cryptosystems [J ]. Mathematics of Computation, 1987, 48 ( 177 ): 203-209.
  • 2Miller V S. Uses of elliptic curves in cryptography [C]// Proceedings of Advances in Cryptology CRYPT()'85. Santa Barbara, USA. Springer, 1986: 417- 428.
  • 3Joye M, Tibouchi M, Vergnaud D. Hulls model for elliptic curves[ C]// Lecture Notes in Computer Science. Brussels, Belgium: Springer-Verlag, 2010, 6234: 234-250.
  • 4Devigne J, Joye M. Binary Huff curves[C]// Lecture Notes in Computer Science, CT RSA. San Francisco, USA: Springer, 2011, 6558: 340-355.
  • 5Elmegaard-Fessel L. Efficient scalar multiplication and security against power analysis in cryptosystemsbased on the nist elliptic curves over prime fields[EB/OL]. http://eprint, iacr. org/2006/313.
  • 6WU Hongfeng,FENG Rongquan.Elliptic Curves in Huff's Model[J].Wuhan University Journal of Natural Sciences,2012,17(6):473-480. 被引量:1
  • 7Boneh D, Franklin M K. Identity-based encryption from the Weil pairing[C]// 21st Annual International Cryptology Conference. Santa Barbara, USA : Springer, 2001, 2139:213 -229.
  • 8H(rwitz ], Lynn B. Toward hierarchical identity based encryption[C]// I.ecture Notes in Computer Science, Amsterdam, Netherlands: Springer, 2002, 2332.. 466- 481.
  • 9Boneh D, Gentry C, Lynn B, et al. Aggregate and verifiably encrypted signatures from bilinear maps [C]// Imernational Conference on the Theory and Applications o{ Cryptographic Techniques, Warsaw, Poland.. Springer, 2003, 2656: 416-432.
  • 10Cha J C, Cheon J H. An identity-based signature from gap Diffie-Hellman groups [C]// Proceedings of 6th International Workshop on Practice and Theory in Public Key Cryptography. Miami, USA: Springer, 2003, 2567: 18-30.

二级参考文献15

  • 1Koblitz N. Elliptic curve cryptosystems [J]. Math Comp, 1987, 48(177): 203-209.
  • 2Miller V S. Use of elliptic curves in cryptography [C] //Proceedings of Advances in Cryptology-Crypto 1985 (LNCS 218). Berlin: Springer-Verlag, 1986: 417-426.
  • 3Joye M, Tibouchi M, Vergnaud D. Huff's model for elliptic curves [C]//Algorithmic Number Theory (ANTS-IX) (LNCS 6197). Berlin: Springer-Verlag, 2010: 234-250.
  • 4Huff G B. Diophantine problems in geometry and elliptic temary forms [J]. Duke Math J, 1948, 15: 443-453.
  • 5Menezes A J. Elliptic Curve Public Key Cryptosystems [M]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 6Farashahi R R, Shparlinski I E. On the number of distinct elliptic curves in some families [J]. Designs Codes and Cryptography, 2010, 54(1): 83-99.
  • 7SchoofR. Nonsigular plane cubic curves over finite field [J]. J Combine, Theory Ser A, 1987, 46: 183-211.
  • 8Fung G, Stroher H, Williams H, et al. Torsion groups of elliptic curves with integralj-invariant over pure cubic fields [J]. Journal of Number Theory, 1990, 36(1): 12-45.
  • 9Feng Rongquan, Nie Menglong, Wu Hongfeng. Twisted Jacobi intersection curve [C]// Proceedings of Theory and Applications of Model of Computation-TAMC 2010 (LNCS 6108). Berlin: Springer-Verlag, 2010: 199-210.
  • 10Bemstein D J, Birkner P, Joye M, et al. Twisted Edwards curves [C]//Serge Vaudenay editor, Progress in Cryptology-AFRICACRYPT 2008 (LNCS 5023). Berlin: Springer- Verlag, 2008: 389-405.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部