期刊文献+

非共沸混合工质在低温余热回收系统中的特性模拟 被引量:1

Simulation of non-azeotropic mixtures in a low-temperature waste heat recovery system
在线阅读 下载PDF
导出
摘要 通过模拟非共沸混合工质和纯工质在低温烟气有机朗肯循环(ORC)系统中的特性,考察了不同质量比下的混合工质的热力学特性和经济特性,并与纯工质进行对比。结果表明:混合工质在基本ORC系统中的热效率和质量流量介于其组元纯质之间,但在加装回热器后,部分混合工质的系统热效率优于纯工质,且混合工质较纯工质具有更小的膨胀比和单位功量;含有1种相同组元的二元混合工质,其组元之间临界温度差越大,热力学性能变化幅度越大。 By simulating the characteristics of non-azeotropic mixtures and pure fluids in a low-temperature waste heat organic Rankin cycle (ORC),the economic and thermodynamic properties of the mixtures with different proportions were compared with each other and with that of the pure working fluids.The results show that,the cyclic thermal efficiency and mass flow rate of the mixtures in basic ORC system layed be-tween that of each pure fluid.However,after the regenerator was installed,some of the non-azeotropic mix-tures had higher thermal efficiency than the pure substance,and the non-azeotropic mixtures had lower pressure ratio and unit power required for UA.For the two-component non-azeotropic mixtures with one of the components be the same,the larger the critical temperature difference between the two components,the greater the thermodynamic performance changed.
出处 《热力发电》 CAS 北大核心 2014年第11期87-91,共5页 Thermal Power Generation
基金 国家自然基金项目(51306059) 华北电力大学中央高校基本科研业务费专项资金(2014ZD34)
关键词 非共沸混合工质 低温余热回收系统 有机朗肯循环 质量比 温度滑移 循环热效率 non-azeotropic mixture low temperature waste heat recovery system organic Rankine cycle mass ratio temperature glide thermal efficiency
  • 相关文献

参考文献2

二级参考文献34

  • 1赵力.基于传热窄点的非共沸混合工质优选方法[J].天津大学学报,2005,38(11):1001-1005. 被引量:8
  • 2赵力.空调工况下非共沸制冷剂在冷凝器中的换热特性[J].化工学报,2006,57(6):1309-1313. 被引量:8
  • 3魏东红,陆震,鲁雪生,顾建明.废热源驱动的有机朗肯循环系统变工况性能分析[J].上海交通大学学报,2006,40(8):1398-1402. 被引量:40
  • 4Calm J M, Hourahan G C. Refrigerant data summary [ J].Engineered Systems, 2001, 18 ( 11 ) : 74-88.
  • 5Lemmon E W, McLinden M O, Huber M L. NIST reference fluid thermodynamic and transport properties-REFPROP, Version 8.0 [ Z ]. National Institute of Standard Technology, 2002.
  • 6Mills D. Advances in solar thermal electricity technology[J]. Solar Energy, 2004, 76:19-31.
  • 7Goswami D Y, Vijayaraghavan S, Lu S, et al. New and emerging developments in solar energy[ J]. Solar Solar Energy, 2004, 76: 33-43.
  • 8Lu Shaoguang. Thermodynamic analysis and optimization of a new ammonia based combined power/cooling cycle [ D]. Florida: University of Florida, 2002.
  • 9Xu F, Goswami D Y. Thermodynamic properties of ammoniawater mixtures for power-cycle applications [ J ]. Energy, 1999, 24 : 525-536.
  • 10Xu Feng, Yogi Goswami D, Bhagwat Sunil S. A combined power/cooling cycle[J]. Energy, 2000, 25:233-246.

共引文献58

同被引文献3

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部