期刊文献+

基于遗传算法与时序红外热图加权叠加的孔洞缺陷检测 被引量:3

Hole Defect Detection Based on Genetic Algorithm and Sequence Infrared Thermography Weighted Stack
在线阅读 下载PDF
导出
摘要 针对浅表层缺陷与正常区域特征混叠问题,提出了一种基于遗传算法与时序红外热图加权叠加的红外无损检测方法。研究以铝板的16类孔洞缺陷为对象,采集预热试件降温过程的时序红外热图,获取相应时序灰度图;并以时序图中缺陷和正常区域灰度差值的加权和为目标函数,采用遗传算法优化加权系数;基于最优加权系数,对时序灰度图依次进行加权叠加和梯度增强处理,并对增强效果进行评估。结果表明:经加权叠加和梯度增强处理后,缺陷与正常区域的灰度比分别提升8.5%和31.0%。缺陷特征得到显著增强。 Aiming at the shallow surface defects and normal regional characteristics aliasing problems, the paper proposed a method of infrared nondestructive testing based on genetic algorithm and sequence infrared thermography weighted stack. The study focused on the object of 16 classes hole defects of aluminum plate. Firstly, sequence infrared image of aluminum plate during the cooling process were collected, the sequential grayscale were obtained from which. Secondly, gray difference weighted sum between defect and normal area was put in sequence diagram as objective function, and genetic algorithm was used to optimize the weighted coefficients. Then, the sequence gray diagram was weighted superposed and gradient enhancement was processed based on the optimization of the weighted coefficient, and then the effect of enhancement was evaluated. The results show that: after the weighted gradient overlay and enhancement processing, gray ratio between defects and normal area have been raised up to 8.5% and 31.0% respectively, and the defect feature are enhanced significantly.
出处 《红外技术》 CSCD 北大核心 2014年第11期896-899,共4页 Infrared Technology
基金 国家自然科学基金 复杂金属零件隐性缺陷电磁脉冲激励红外热成像检测与评估方法研究 编号:51175175 江西省教育厅科技项目 金属材料缺陷主动式电磁激励红外热波定量检测技术 编号:GJJ13342
关键词 红外无损检测 孔洞缺陷 遗传算法 加权叠加 梯度增强 infrared nondestructive testing, hole defects, genetic algorithm, weighted stack, gradient enhancement
  • 相关文献

参考文献14

二级参考文献165

共引文献547

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部