期刊文献+

基于不同催化体系的高级氧化技术深度处理造纸废水的研究 被引量:1

Advanced Treatment of Papermaking Wastewater by Thermally and Ferrous Ion Activated Persulfate
在线阅读 下载PDF
导出
摘要 分别采用加热和亚铁离子方式活化过硫酸钠(PS)产生硫酸根自由基的高级氧化技术处理造纸厂废水二级出水(COD为80mg/L),考察了p H值、温度、PS用量、催化剂投加量等因素对COD降解率的影响,初步确定了硫酸根自由基高级氧化降解造纸废水的工艺条件。结果表明:在酸性至中性条件下,两种体系产生的硫酸根自由基皆可降解有机污染物。热活化体系对COD的降解速率随着温度(室温~70℃)升高而升高,随PS用量(0.238g/L^0.952g/L)增加而增加;亚铁离子活化体系对COD的去除在PS投加量为0.476g/L,亚铁投加量为0.278g/L时有最佳效果。两种体系在造纸废水处理中都有应用前景,从经济角度上讲,亚铁离子活化过硫酸钠体系更有优势。 Advanced oxidation process this work to degrade pulping and pape based on thermally and Fe ( U ) activated sodium persulfate (PS)was used in rmaking wastewater( COD of 80mg/L). The effect of pH on the degradation efficiency of wastewater was investigated , also the effects of temperature, PS dosage and catalyst dosage were examined. The results showed that the two systems can degrade organic compounds in different pH conditions. The efficiencies of COD degradation in heat/PS system enhanced as the temperature and PS dosage increased. The Fe2+/ PS system had the highest removal efficiency of COD under the optimum condition( [ PS] 0 =0.476g/L, [ Fe2+ ] 0 = 0. 278g/L). It was proved that both of the two systems had perspective for treatment of papermaking wastewater, but Fe( Ⅱ ) activated persulfate had more advantages.
出处 《造纸科学与技术》 北大核心 2014年第5期96-99,共4页 Paper Science & Technology
基金 广东省战略新兴攻关项目(2012A032300015)
关键词 高级氧化 造纸废水 硫酸根自由基 催化 深度处理 advanced oxidation process papermaking wastewater sulfate radical catalysis deeply treatment
  • 相关文献

参考文献19

  • 1Liang X L, Zhong Y H, Zhu S Y,et al. The decolorization of Acid Orange II in non - homogeneous Fenton reaction catalyzed by natural vanadium - titanium magnetite [ J ]. Journal of Hazardous Materials, 2010, 181,(1-3):112-120.
  • 2Bansal A, Divya N, Jana A K. Performance of Titania Based Nano - Photoeatalysts on the Degradation of Orange G Azo Dye [ J ]. Re- cent Advances in Energy and Environment,2010,5:140 -145.
  • 3Zhang S Y, Yang X, Shao X T, et al. Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature [ J]. Journal of Hazardous Materials, 2011, 186:659 - 666.
  • 4Duran A, Monteagudo J M, Amores E. Solar photo - Fenton degra- dation of Reactive Blue 4 in a CPC reactor[ J]. Applied Catalysis B - Environmental, 2008, 80 ( 1 - 2) :42 - 50.
  • 5Lau T K, Chu W, Graham N J D. The aqueous degradation of buty- lated hydroxyanisole by UV/S2O2 - : Study of reaction mechanisms via dimerization and mineralization [ J ]. Environmental Science & Technology, 2007, 41 (2) :613 -619.
  • 6Neta P, Huie R E, Ross A B. Rate constants for reactions of inor- ganic radicals in aqueous solution [ J ]. Phys. Chem. Ref. Data, 1988,17(3) :1027 - 1284.
  • 7Marsh C, Edwards J O. The free - radical decomposition of peroxy- monosulfate [ J ]. Prog. React. Kinet, 1988,15:35 - 75.
  • 8Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals( · OH/O- ) in aqueous solution[ J]. Phys. Chem. Ref. Data 1988, 17 (2):513-886.
  • 9Huang K C. Couttenve R A. Hoag G E. Kinetics of heat - assistedpersulfate oxidation of methyl tert - butyl ether (MTBE) [ J ]. Chemosphere, 2002,49 (4) :413 - 420.
  • 10Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat - activated persulfate: Kinetics and products[J]. Environmental Science & Technology,2007,41 (3) : 1010 - 1015.

二级参考文献17

  • 1Yang S Y, Wang P, Yang X, et al. Degradation efficiencies ofazo dye Acid Orange 7 by the interaction of heat UV and anions with common oxidants: Persulfate peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179 (1-3): 552-558.
  • 2Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environmental Science & Technology, 2007, 41 (3) : 1010-1015.
  • 3Xu X R, Li X Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation and Purification Technology, 2010, 72 ( 1 ) : 105-111.
  • 4Lin Y T, Liang C J, Chen J H.Feasibility study of ultraviolet activated persulfate oxidation of phenol[J]. Chemosphere, 2011, 82 (8) : 1168-1172.
  • 5Oh S Y, Kim H W, Park J M, et al. Oxidation ofpolyvinyl alcohol by persulfate activated with heat Fe^2+ and zero-valent iron[J]. Journal of Hazardous Materials, 2009, 168 (1): 346-351.
  • 6Lee Y C, Lo S L, Chiueh P T, et al. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J]. Water Research, 2019, 44 (3) : 886-892.
  • 7Crimi M, Taylor J.Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants[J]. Soil and Sediment Contamination: An International Journal, 2007, 16 (1): 29-45.
  • 8Block P A, Brown R A, Robinson D. Novel activation technologies for sodium persulfate in situ chemical oxidation[C]//Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA.. Columbus, Battelle Press. 2004.
  • 9黄伟英.铁矿石催化过氧化氢-过硫酸钠去除地下水中三氯乙烯的研究[D].北京:中国地质大学,2011.
  • 10Rastogi A, Al-Abed S R. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe( II ) mediated advanced oxidation ofchlorophenols[J]. Water Research, 2009, 43 (3): 684-694.

共引文献9

同被引文献10

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部