期刊文献+

复杂网络中的非线性系数和边权的影响

Effect of nonlinear coefficient and edge weight on complex networks
在线阅读 下载PDF
导出
摘要 在加权的无标度复杂网络中使用SIR模型,使用边权的函数f(ω)来表示节点间的连接强度,以模拟现实中人们对于关系更亲密的人的信任度更高的情况.现实生活中,谣言的传播者并不总是将谣言告知所有认识的人,故引入Anurag Singh(2013)模型中的非线性传播指数μ,以研究谣言在较为实际的加权复杂网络中的传播行为.本文讨论了f(ω)和μ对于传播过程的一些影响,发现在相关加权网络中,边权〈ω_(kk')在其函数f(ω)的作用下和μ对于人群中听过谣言的人的比例r(t)的稳态值即f(∞)共同产生影响,并且也会影响谣言的爆发时间.在研究中,引入f(ω)和μ并未使修正后的传播模型有一个正的传播阈值九. In this paper,standard SIR model of rumor spreading is used in the weighting complex networks.The tie strength is expressed by the function of edge weight f(ω) in order to simulate the function between relationship and reliant interpersonal.In the practical scene,a node may only be contacted by some of its neighbors,so that the nonlinear rumor spread exponent α of Anurag Singh (2013) is introduced,and the rumor spreading in complex networks is discussed.The effect of f(ω) andαon the rumor threshold is discussed in the paper.It is found that the mean edge weight <ωkk,together with its function f(ω) and μ are both effect the steady state value of r(t),that is r(o∞),which means the rate of people who heard the rumor in the crowd.And the explosion time is also effected by them.In the research,a positive tumor threshold λc had not been found when the f(ω) and μ are introduced.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期49-56,共8页 Journal of East China Normal University(Natural Science)
关键词 谣言传播 SIR模型 加权网络 非线性传播 rumor spreading SIR model weighting complex networks nonlinear spreading
  • 相关文献

参考文献21

  • 1何大韧,刘宗华,汪秉宏.复杂网络研究的一些统计物理学方法及其背景[J].力学进展,2008,38(6):692-701. 被引量:10
  • 2YOOK S H, JEONG H, BARAB/tSI A L, et al. Weighted evolving networks [J]. Physical Review Letters, 2001 86(25): 5835-5838.
  • 3BARTHELEMY M, Barrat A, Pastor-Satorras R, et al. [J]. Physica a: Statistical mechanics and its applications Characterization and modeling of weighted networks 2005, 346(1): 34-43.
  • 4PAN Z, LI X, WANG X. Generalized local-world models for weighted networks [J]. Physical Review E, 2006, 73(5): 056109.
  • 5MORENO Y, NEKOVEE M, PACHECO A F. Dynamics of rumor spreading in complex networks [J]. Physical Review E, 2004, 69(6): 066130.
  • 6NAIMI Y, ROSHANI F, ROSHANI F, et al. Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading in complex social networks [J/OL]. 201012014-10-12].http://publications.ictp.it.
  • 7CHENG J J, LIU Y, SHEN B, et al. An epidemic model of rumor diffusion in online social networks [J]. The European Physical Journal B, 2013, 86(1): 1-7.
  • 8熊熙,胡勇.基于社交网络的观点传播动力学研究[J].物理学报,2012,61(15):104-110. 被引量:43
  • 9DODDS P S, WATTS D J. Universal behavior in a generalized model of contagion [J]. Physical review letters, 2004, 92(21): 218701.
  • 10SINGH A, SINGH Y N. Nonlinear spread of rumor and inoculation strategies in the nodes with degree dependent tie strength in complex networks [J/OL]. arXiv preprint arXiv: 1208, 6063, 2012.

二级参考文献68

  • 1雷克 黄均等(译).统计物理现代教程[M].北京:北京大学出版社,1983.384-385.
  • 2Watts D J, Strogatz S H. Collective dynamics of small world networks. Nature, 1998, 393:440-442.
  • 3Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509-512.
  • 4Landau L D, Lifshitz E M. Statistical Physics. 3^rd Edition. London: Pergamon Press, 1986.
  • 5Stanley H E. Introduction to Phase transition and Critical Phenomena. New York: Oxford Univ. Press, 1971.
  • 6Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett, 1987, 59: 381-384.
  • 7Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Phys Rev A, 1988, 38:364-374.
  • 8Bak P, Tang C. Critical exponents and scaling relations for self-organized critical phenomena. Phys Rev Left, 1988, 60:2347-2350.
  • 9Tang C, Bak P. Mean field theory of self-organized critical phenomena. J Sat Phys, 1988, 51(5/6): 797-802.
  • 10Bak P.大自然如何工作.李炜,蔡勖译.武汉:华中师范大学出版社,2001.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部