Framework Definitions of Effects and Phenomena and Examples in Differential and Difference Equations
Framework Definitions of Effects and Phenomena and Examples in Differential and Difference Equations
摘要
Framework definitions of earlier informally used notions of effect and phenomenon are proposed, examples of their role in developing mathematics are given. Phenomena of singular cycle and deepening boundary layer in the theory of singularly perturbed differential equations and ancient popular synergetic process described by system of random difference equations are presented.
参考文献5
-
1G. Kenenbaeva, Theory and methodic of searching new effects and phenomena in the theory of perturbed differential and difference equations (in Russian). "llim", Bishkek, Kyrgyzstan, 2012, 203 p.
-
2A.A.Borubaev, P.S.Pankov, Computer presentation of kinematic topological spaces (in Russian). The Kyrgyz State National University, Bishkek, Kyrgyzstan, 1999, 131 p.
-
3M.I.lmanaliev, P.S.Pankov, G.M. Kenenbaeva Algorithm of qualitative investigation of singularly perturbed ordinary differential equations and autonomous systems &the second order, the phenomenon of singular cycle (in Russian). Proceedings of the Russian Academy of Sciences, vol. 354, no. 6 (1997), pp. 733-735.
-
4P.S. Pankov, G.M. Kenenbaeva, The phenomenon of irgoo as the first example of dissipative system and its implementation on computer (in Kyrgyz). Proceedings of the National Academy of Sciences of Kyrgyz Republic, no. 3 (2012), pp. 105-108.
-
5G.M. Kenenbaeva, Effects and phenomena in the theory of differential and difference equations, In: A.A. Borubaev (Ed.), Abstracts of V Congress of the Turkic World Mathematicians, Kyrgyz Mathematical Society, Bishkek, Kyrgyzstan, 2014, p. 120.
-
1白婧.一类三阶非线性微分方程的奇周期解[J].四川大学学报(自然科学版),2015,52(6):1217-1220. 被引量:4
-
2任崇勋,李静,俞元洪.非线性微分方程的周期边值问题[J].济宁师范专科学校学报,2000,21(3):1-2.
-
3潘保国.一类混合的广义GARCH模型的概率性质[J].衡阳师范学院学报,2008,29(6):19-22.
-
4HuaiXin Cao.von Neumann measurement-related matrices[J].Science China(Physics,Mechanics & Astronomy),2017,60(2):78-79.
-
5张全信.二阶非线性摄动微分方程的振动性定理[J].纯粹数学与应用数学,1999,15(1):61-67. 被引量:1
-
6孙建武,张全信.一类二阶非线性摄动微分方程解的振动性质[J].徐州师范大学学报(自然科学版),2008,26(2):50-53.
-
7张全信,任学武.二阶非线性摄动微分方程解的振动性[J].滨州学院学报,1994,15(2):6-11.
-
8盛卫红.一类二阶非线性摄动微分方程的振动性[J].滨州师专学报,2004,20(4):11-14.
-
9高丽,张全信.二阶非线性摄动微分方程解的振动性质[J].大学数学,2010,26(3):99-102. 被引量:1
-
10张全信.二阶非线性摄动微分方程的振动性定理[J].烟台大学学报(自然科学与工程版),1992,5(1):32-36. 被引量:1