期刊文献+

基于优化支持向量机的采煤机故障诊断技术 被引量:12

Breakdown Diagnosis of Coal Excavator Based on Optimized Support Vector Machine
在线阅读 下载PDF
导出
摘要 为了对采煤机故障进行准确诊断研究,本文提出了一种基于优化支持向量机的采煤机故障诊断新方法,首先采用主成分分析法(PCA)对采煤机故障特征参数进行特征提取,其次应用特征数据进行基于支持向量机(SVM)的采煤机故障诊断模型训练,再次采用交叉验证方法对SVM模型参数进行优化,建立最优SVM采煤机故障诊断模型,最后通过对比实验,验证了基于优化SVM采煤机故障诊断模型的可行性和优越性。 In order to research on breakdown diagnosis of coal excavator, this paper proposed an optimal support vectormachine (SVM) model for it. Firstly the principal component analysis (PCA) was adopted to extract the breakdowncharacteristic parameters of coal excavator. Secondly the breakdown characteristic data was applied to the breakdowndiagnosis model training based on SVM using the cross validation method to optimize the parameters of SVM, andestablishing the optimal SVM model for coal excavator breakdown diagnosis. At last, with comparing experiment, theexperimental result showed that the optimized SVM breakdown diagnosis model of coal excavator was feasible andadvantageous.
作者 刘冲
机构地区 河北金融学院
出处 《山东农业大学学报(自然科学版)》 CSCD 2015年第1期132-135,共4页 Journal of Shandong Agricultural University:Natural Science Edition
基金 河北省社会科学基金年度项目(HB13GL041) 河北省重点发展学科计算机应用技术(冀教高HB201406)
关键词 采煤机 支持向量机 主成分分析 交叉验证 故障诊断 Coal excavator Support Vector Machine Principal Component Analysis cross validation breakdown diagnosis
  • 相关文献

参考文献5

二级参考文献24

共引文献119

同被引文献153

  • 1张鑫,杨梅.掘进机截割头钻进工况载荷的计算机模拟[J].山东科技大学学报(自然科学版),2005,24(3):21-23. 被引量:11
  • 2林茂六,陈春雨.基于傅立叶核与径向基核的支持向量机性能之比较[J].重庆邮电学院学报(自然科学版),2005,17(6):647-650. 被引量:11
  • 3Wang Xiaolan, Li Hui. One-month ahead prediction of wind speed and output power based on EMD and LSSVM [ C ]//International Conference on Energy and Environment Tech- nology. Guilin, China : IEEE, 2009:431 - 442.
  • 4Yang Xiyun, Cui Yuqi, Zhang Hongsheng, et al. Research on modeling of wind turbine based on LS· SVM [ C]// In- ternational Conference on Sustainable Power Generation and Supply. Nanjing, China,2009 : 1 - 6.
  • 5Geem ZW, Kiln JH, Loganathan GV. A new heuristic opti- mization algorithm : harmony search [ J ]. Simulation, 2001, 76(2) :60 -68.
  • 6MAHDAVI M, FESANGHARY M, DAMANGIR E. An im- proved harmony search algorithm for solving optimization problems [ J ]. Applied Mathematics and computation, 2007, 188(2) :1567 - 1579.
  • 7ALIA O, MANDAVA R. The variants of the harmony search algorithm : an overview [ J ]. Artificial Intelligence Review,2011,36( 1 ) :49 - 68.
  • 8Sivasubramani S, Swarup K S. Multi-objective harmony search algorithm for optimal power flow problem[ J ]. Interna- tional Journal of Electrical Power and Energy Systems, 2011, 33 (3) :745 - 752.
  • 9GEEM Z W. Novel derivative of harmony search algorithm for discrete design variables [ J ]. Applied Mathematics and Computation, 2008,199 ( 1 ) : 223 - 230.
  • 10Nahas, Nabil, Thien-My, et al. Harmony search algo- rithm: Application to the redundancy optimization problem [ J ]. Engineering Optimization ,2010,42 (9) : 845 - 861.

引证文献12

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部