期刊文献+

一种基于学习自动机的WSN区域覆盖算法 被引量:4

Learning Automata-Based Area Coverage Algorithm for Wireless Sensor Networks
在线阅读 下载PDF
导出
摘要 基于连通支配集(Connected dominating set,CDS)的区域覆盖算法大都采用休眠节点数量的最大化机制来实现节能,这将给无线传感器网络中的活动节点带来沉重的负担。活动节点电能的迅速耗尽将导致CDS失效,产生覆盖盲区。不断激活其他休眠节点,会出现频繁的网络拓扑变化,导致网络收敛性出现问题。提出了一种基于学习自动机的WSN区域覆盖算法。采用受度限制的连通支配集d-CDS来构造WSN骨干网络,利用学习自动机选择当前节点的最优邻居节点,以此实现对所构造CDS的优化,实现活动节点的负载均衡,改善区域覆盖性能。通过仿真实验对比Gossip、ST-MSN和TMPO等算法,表明本文提出的算法在网络覆盖比率、活动节点的剩余电量等方面均存在优势。 In the most existing connected dominating set(CDS)based coverage algorithms,the mechanisms of maximizing sleep node numbers is adopted to save energy in WSN.Active nodes of WSN cause rapidly exhausts energy which leads to CDS failure and fade coverage.In addition,frequently activating other nodes speeds up network topology changes,and lead to the network convergence problems.A learning automata-based area coverage algorithm is proposed for WSN.d-CDS is adopted to construct network topology,and learning automata is used to select the optimal node of current sensors.Then the constructed CDS can be optimized,and the load balance of the active nodes is realized to improve network coverage performance.Finally,Simulation experiments are conducted to compare Gossip,ST-MSN and TMPO.The results show that,the proposed algorithm is superior to the three algorithms in network coverage rate and the residual energy of active nodes.
出处 《数据采集与处理》 CSCD 北大核心 2014年第6期1016-1022,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(31371525)资助项目 河南省教育厅科学技术研究重点(14A520067)资助项目 河南省信息技术教育研究重点(ITE12037)资助项目 河南省教育厅人文社会科学研究(2014-gh-245)资助项目 2014年河南科技学院教育教学改革研究重点(2014PUZD08)资助项目
关键词 无线传感器网络 连通支配集 区域覆盖 学习自动机 剩余电量 wireless sensor networks connected dominating set(CDS) area coverage learning automata residual energy
  • 相关文献

参考文献11

  • 1龙昭华,李吴,蒋贵全.无线传感器网络中一种优化的隐式跨层传输控制算法[J].传感器与微系统,2013,32(7):116-119. 被引量:3
  • 2谢珊珊,白光伟,曹磊.基于区域划分的连通支配集协议[J].计算机工程与设计,2012,33(4):1319-1323. 被引量:4
  • 3Huang Ru, Zhu Jie, Xu Guanghui. Energy-efficient heuristic metric for SCP in sensor networks [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2008, 25(1).. 51-60.
  • 4Haas Z J, Halpern J Y, Li L E. Gossip-based ad hocrouting [ J ]. IEEE/ACM Trans on Networking, 2006, 14(3) : 479-491.
  • 5Min M, Du H, Jia X, et al. Improving construction for connected dominating set with Steiner tree in wireless sensor networks[J]. Journal of Global Opti- mization, 2006, 35(1): 111-119.
  • 6Bao L, Garcia-Luna-Aceves J J. Topology manage- ment in ad hoe networks[C]// Procedings of Mobi- Hoe. Annapolis, Maryland, USA: [s.n.]. 2003.
  • 7Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocols for wireless mierosensor networks [C]// Proceedings of the Ha- waaian Intl Conference on Systems Science. Hawai- i. Waikoloa, Big Island: [s.n.]. 2000.
  • 8米志超,周建江.无线传感网络中神经网络路由算法[J].南京航空航天大学学报,2008,40(6):780-784. 被引量:6
  • 9黄刚,王汝传,许一帆.无线传感器网络中基于分簇广播认证协议方案[J].南京航空航天大学学报,2010,42(1):72-76. 被引量:8
  • 10Narendra K S, Thathachar M A L. Learning autom- ata: an introduction[M]. New York Prentice-Hall, 1989.

二级参考文献35

共引文献19

同被引文献23

  • 1Narendra K S, Thathachar M A L. Learning automata: An introduction[M]. Englewood Cliffs, NJ : Prentice Hall, 1989 : 35-58.
  • 2Thathachar M A L,Sastry P S. Varieties of learning automata:An overview[J]. IEEE Transactions on Systems,Man,and Cy- bernetics,Part B: Cybernetics,2002,32(6) 711-722.
  • 3Howell M N,Frost G P, Gordon T J, et al. Continuous action reinforcement learning applied to vehicle suspension control[J]. Mechatronics, 1997,7(3) 263-276.
  • 4Howell M N,Gordon T J. Continuous action reinforcement learning automata and their application to adaptive digital filter de- sign[J]. Engineering Applications of Artificial Intelligence, 2001,14 (5) : 549-561.
  • 5Sastry P S,Nagendra G D, Mamwani N. A team of continuous-action learning automata for noise-tolerant learning of half- spaces[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics, 2010,40(1):19-28.
  • 6Torkestani J A. An adaptive focused web crawling algorithm based on learning automata[J]. Applied Intelligence, 2012,37 (4) :586-601.
  • 7Misra S,Krishna P V,Saritha V,et al. Learning automata as a utility for power management in smart grids[J]. IEEE Com- munications Magazine, 2013,51 (1) : 98-104.
  • 8Mohamadi H,Ismail A S, Salleh S. Solving target coverage problem using cover sets in wireless sensor networks based on learning automata[J]. Wireless Personal Communications, 2014,75 (1) : 447-463.
  • 9Torkestani J A,Pisheh E G. A learning automata-based blood glucose regulation mechanism in type 2 diabetes[J]. Control Engineering Practice, 2014,26 : 151-159.
  • 10GullapaIli V. A stochastic reinforcement learning algorithm for learning real-valued functions[J]. Neural Networks, 1990,3.. 671-692.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部