期刊文献+

Bezoutian矩阵的一致逼近形式

The uniform approximation form of Bezoutian matrix
在线阅读 下载PDF
导出
摘要 借助闭区间上的连续函数可以用Bernstein多项式一致逼近这一事实,将多项式对所生成的经典Bezoutian矩阵和Bernstein Bezoutian矩阵推广到C[0,1]上函数对所对应的情形,给出了Bezoutian矩阵一致逼近形式的定义,并且得到如下结论:给出了经典Bezoutian矩阵的Barnett型分解公式和三角分解公式的一致逼近形式;提供了经典Bezoutian矩阵和Bernstein Bezoutian矩阵的一致逼近形式的两类算法;得到了上述两种矩阵的一致逼近形式中元素间的两个恒等关系式.最后,利用数值实例对恒等关系式进行验证,结果表明两类算法是有效的. Using the fact that Bernstein polynomial has the character of uniform approximation to continuous function on a closed interval, we generalize the classical Bezoutian matrix and Bernstein Bezoutian matrix gen-erated by a pair of polynomials to functions on the closed interval. The definition on the uniform approximation of Bezoutian matrices is given. And we obtain some conclusions about them. Firstly the uniform approximation form of the Barnett type factorization and triangular factorization formulas of classical Bezoutian matrix are presented. Secondly the algorithms of the uniform approximation form with respect to the classical Bezoutian matrix and Bernstein Bezoutian matrix are provided. Furthermore, we obtain two identical relations on ele-ments of the uniform approximation form relative to the two matrices mentioned before. Finally the numerical example is presented to verify the identical relation and show the effectiveness of the algorithms.
作者 曹萌
出处 《纯粹数学与应用数学》 CSCD 2014年第6期649-660,共12页 Pure and Applied Mathematics
关键词 BERNSTEIN多项式 经典Bezoutian矩阵 BERNSTEIN Bezoutian矩阵 一致逼近形式 算法 Bernstein polynomial classical Bezoutian matrix Bernstein Bezoutian matrix algorithm uniform approximation form
  • 相关文献

参考文献21

  • 1Puhrmann P A. A Polynomial Approach to Linear Algebra [M]. New York: Springer-Verlag, 1996.
  • 2Barnett S. Polynomials and Linear Control Systems [M]. New York: Springer-Verlag, 1983.
  • 3Yang Z H. Polynomial Bezoutian matrix with respect to a general basis [J]. Linear Algebra and its Appli-cations, 2001,331:165-179.
  • 4Yang Z H, Hu Y J. A generalized Bezoutian matrix with respect to a polynomial sequence of interpolatorytype [J]. IEEE Transactions on Automatic Control, 2004,49(10):1783-1789.
  • 5Wu H Z. Generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field [J].Linear Algebra and its Applications, 2010,432(12):3351-3360.
  • 6Yang Z H, Cui B F. On the Bezoutian matrix for Chebyshev polynomials [J]. Applied Mathematics andComputation, 2012,219:1183-1192.
  • 7Rost K. Matrix representations of split Bezoutians [Jj. Linear Algebra and its Applications, 2012,436:3904-3918.
  • 8Ehrhardt T, Rost K. Resultant matrices and inversion of Bezoutians [J], Linear Algebra and its Applications,2013,439(3):621-639.
  • 9Belhaj S. Computing the polynomial remainder sequence via Bezout matrices [J]. Journal of Computationaland Applied Mathematics, 2013,250:244-255.
  • 10卢振泰,陈武凡.基于Bernstein多项式的数字图像分存[J].电路与系统学报,2009,14(4):17-20. 被引量:2

二级参考文献41

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部