期刊文献+

基于属性相似度的连续型特征选择方法 被引量:3

A method of feature selection for continuous features base on attribute similarity
在线阅读 下载PDF
导出
摘要 特征选择作为模式识别领域的研究热点,是一种重要的降维方法.对于连续型特征,目前主要采用离散化方法或特征分类能力的"相关性"评估进行特征选择.引入区间数相似度的概念,提出一种连续型特征选择方法.该方法以区间数相似度为基础,定义每个特征的属性相似度,以此作为特征选择的启发信息,对特征全集进行排序,选择特征子集,实现特征选择.相关实验表明了该方法的有效性. Feature selection is a common method of dimension reduction in pattern recognition. For continuous features,feature selection mainly has two methods: discretization and relevance assessment of the features classification ability. a method of feature selection for continuous feature is realized by introducing the concept of similarity degrees of interval number. This method redefines the concept of feature similarity base on the similarity degrees of interval number as heuristic information on feature ranking,to achieve feature selection. The experiments on the UCI repository data sets have demonstrated that the approach of the feature ranking and feature selection has greatly improved the effectiveness and efficiency of classifications on continuous features.
出处 《渤海大学学报(自然科学版)》 CAS 2014年第4期350-355,共6页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金(No:60473125)
关键词 特征选择 区间数 属性相似度 连续型特征 feature selection attribute similarity continuous features interval numbers
  • 相关文献

参考文献9

  • 1陈铁明,马继霞,Samuel H.Huang,蔡家楣.一种新的快速特征选择和数据分类方法[J].计算机研究与发展,2012,49(4):735-745. 被引量:20
  • 2李烨,尹汝泼,蔡云泽,许晓鸣.基于离散化的支持向量机特征选择[J].计算机工程,2006,32(11):16-17. 被引量:4
  • 3K.Kira,L.A.Rendell.A Practical Approach to Feature Selection[C].In:Proc.Intern.Conf.on Machine Learning,1992:249-256.
  • 4K.Kira,L.A.Rendell.The feature selection Problem:Traditional methods and a new algorithm[C].In:Proceedings of the Tenth National Conference on Artificial Intelligence.1992:129-134.
  • 5Marko Robnik-Sikonja,Igor Kononenko.Theoretical and Empirical Analysis of Relief and RRelief F[J].Machine Learning Journal,2003,53(1-2):23-69.
  • 6王宏威,李国和,李雪,等.连续型特征的特征选取方法[J].中南大学学报:自然科学版,2011,42(增1):651-655.
  • 7张国英,沙芸,余有明,刘玉树.基于属性相似度的云分类器[J].北京理工大学学报,2005,25(6):499-503. 被引量:11
  • 8LU Hong-fei,Erxu Pi,QIU Fa-peng,et al.A particle swarm optimization aided fuzzy cloud classifier applied for plant numerical taxonomy based on attribute similarity[J].Expert Systems with Applications,2009,36:9388-9397.
  • 9许瑞丽,徐泽水.区间数相似度研究[J].数学的实践与认识,2007,37(24):1-8. 被引量:27

二级参考文献34

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1277
  • 2Yu Shi, Eberhart R C. Fuzzy adaptive particle swarm optimization [J]. Evolutionary Computation, 2001(1):27-30.
  • 3Liu Huan, Setiono R. Feature Selection via Discretization [J]. IEEE Transaction on Knowledge and Data Engineering, 1997, 9(4).
  • 4Nguyen S H, Skowron A. Quantization of Real Value Attributes[C].Proc. of the Second Joint Annual Conference on Information Sciences,Wrightsville Beach, North Carolina, USA, 1995.
  • 5Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning About Data [M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 6Nguyen S H. Some Efficient Algorithms for Rough Set Methods[C].Proceedings of the Conference of Information Processing and Management of Uncertainty in Knowledge-based Systems, Granada,Spain, 1996-07: 1451-1456.
  • 7Hettich S, Bay S D. The UCI KDD Archive[DB/OL].http://kdd.ics.uci.edu/, 1999.
  • 8King R D. Statlog Databases. Department of Statistics and Modelling Science[DB/OL]. http://www.liacc.up.pt/ML/statlog/datasets.html,1992.
  • 9Chang Chihchung, Lin Chinjen. LIBSVM: A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/-cjlin/libsvm, 2001.
  • 10Boser B, Guyon I, Vapnik V. A Training Algorithm for Optimal Margin Classifiers[C]. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992.

共引文献58

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部