期刊文献+

基于深度信念网络的PM_(2.5)预测 被引量:30

A prediction method of atmospheric PM_(2.5) based on DBNs
原文传递
导出
摘要 提出一种基于深度信念网络(deep belief networks,DBNs)的区域PM2.5日均值预测方法,讨论了训练数据选择方式,并优化了DBNs参数设置。通过相关实验并与基于径向基神经网络(radial basis function,RBF)和反向传播神经网络(back propagation,BP)方法比较,验证了基于DBNs方法的可行性和预测精度。实验结果表明:基于DBNs的方法,区域(西安市)预测PM2.5日均值与观测日均值之间均方差(mean square error,MSE)为8.47×10-4mg2/m6;而采用相同数据集,基于RBF和BP的方法均方差为1.30×10-3mg2/m6和1.96×10-3mg2/m6。比较分析表明:基于DBNs的方法能较好预测区域整体PM2.5的日均值变化趋势,显著优于基于神经网络和径向基网络方法的预测结果。 A DBNs-based (deep belief networks)method for forecasting the daily average concentrations of PM2. 5 in Xian was proposed.Besides,the way to select training data set as well as the DBNs parameters was optimized.Then relative experiments and comparison with methods based on BP (back propagation)and RBF (radial basis function)ar-tificial neural network confirmed the feasibility and precision of DBNs.The results showed that the MSE (mean square error)between DBNs simulated PM2. 5 daily average concentrations and observed ones was 8. 47 ×10 -4 mg^2/m^6 ,while the MSE of RBF and BP was 1. 30 ×10 ^-3 mg^2/m^6 and 1. 96 ×10 ^-3 mg^2/m^6 respectively.Therefore the DBNs-based method was fit for prediction of PM2. 5 concentrations and it predicted more accurately than those methods based on RBF and BP artificial neural network.
作者 郑毅 朱成璋
出处 《山东大学学报(工学版)》 CAS 北大核心 2014年第6期19-25,共7页 Journal of Shandong University(Engineering Science)
基金 国家高技术研究发展计划(863计划)资助项目(2011AA010702) 湖南省科技厅计划资助项目(2012FJ4269)
关键词 PM2. 5预测 深度信念网络 深度学习 机器学习 限制玻尔兹曼机 PM2. 5 prediction deep belief networks deep learning machine learning restricted boltzmann machine
  • 相关文献

参考文献8

二级参考文献62

  • 1夏萍萍,郭新彪,邓芙蓉,刘红.气管滴注大气细颗粒物对大鼠的急性毒性[J].环境与健康杂志,2008,25(1):4-6. 被引量:22
  • 2YANG Ge1, LV Jianhong1 & LIU Zhiyuan2 1. Department of Power Engineering, Southeast University, Nanjing 210096, China,2. Department of Power Engineering, Nanjing Institute of Technology, Nanjing 210013, China.A new sequential learning algorithm for RBF neural networks[J].Science China(Technological Sciences),2004,47(4):447-460. 被引量:5
  • 3潘纯珍,陈刚才,杨清玲,王定勇,赵琦,周贤杰,张勇.重庆市地区道路PM_(10)/PM_(2.5)浓度分布特征研究[J].西南农业大学学报(自然科学版),2004,26(5):576-579. 被引量:46
  • 4胡大伟,卞新民,许泉.基于ANN的土壤重金属分布和污染评价研究[J].长江流域资源与环境,2006,15(4):475-479. 被引量:10
  • 5Liu M Q,中南工业大学学报,1998年,5卷,2期,141页
  • 6Chen S,Int J Control,1990年,52卷,6期,1327页
  • 7Zhang Yun,He Yong.Study of rough set based grey relational BP neural network on grain yield forecasting[C]//Proeeedings of the 2005 IEEE,Engineering in Medicine and Biology 27th Annual Conference,Shanghai,China,September 1-4,2005.
  • 8BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 9BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 10HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.

共引文献756

同被引文献281

引证文献30

二级引证文献291

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部