期刊文献+

基于自学习的稀疏正则化图像超分辨率方法 被引量:15

Self-learning image super-rsolution method based on sparse representation
在线阅读 下载PDF
导出
摘要 如何设计既能够保持边缘与纹理结构又具有较低计算复杂度的图像超分辨率算法是目前该领域有待解决的难点问题。在Bayesian统计框架下建立了一种新的基于稀疏正则化的图像超分辨模型。模型中的保真项度量理想图像在退化模型下与观测图像的一致性,稀疏正则项刻画理想图像在词典下的稀疏表示。该模型还引入了图像的非局部自相似性和超拉普拉斯先验作为正则化约束。为使稀疏域更好地表征高分辨率图像,选取高分辨率图像块的高频特征进行稀疏表示,由此增强了稀疏模型的有效性。将词典学习融入到超分辨率重建过程中,即直接从当前估计的高分辨率图像特征块学习词典,与从训练样本库中学习词典相比,这种自学习的方法对不同图像的自适应性更强,并且减少了运算量。实验结果表明,该方法可以重建清晰的图像边缘,减小振铃效应,并且对噪声具有很好的鲁棒性。 It is difficult to design an image super-resolution algorithm that can not only preserve image edges and texture structure but also keep lower computational complexity. A new super-resolution model based on sparsity regularization in Bayesian framework is presented. The fidelity term restricts the underlying image to be consistent with the observation image in terms of the image degradation model. The sparsity regularization term constraints the underlying image with a sparse representation in a proper dictionary. We also introduce the non-local self-similarity and hyper-laplacian prior as regularization constraints into the model. In order to make the sparse domain better represent the underlying image,high-frequency features extracted from the underlying image patches are used for sparse representation,which increases the effectiveness of sparse modeling. The dictionary learning into the super-resolution process is incorporated,in this way the dictionary can be learned directly from the currently estimated high-resolution image feature patches. Compared with learning dictionary from pre-collected training data,the self-learning method has stronger adaptability to different images,and reduces computation cost. Experimental results show that our method can reconstruct clear and sharp image edges,reduces ringing effects and has good robustness to noise.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第1期194-200,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(81070853 61203261) 湖北省自然科学基金(2010CDB03301 2013CFB333) 高等学校博士学科点专项科研基金(20124219120002)资助项目
关键词 超分辨率 稀疏表示 非局部自相似 超拉普拉斯 super-resolution sparse representation non-local self-similarity hyper-Laplacian
  • 相关文献

参考文献22

  • 1PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction : A technical overview [ J ]. Signal Processing Magazine, IEEE, 2003, 20(3): 21-36.
  • 2YANG S, WANG M, CHEN Y, et al. Single-image su- per-resolution reconstruction via learned geometric dic- tionaries and clustered sparse coding[ J]. Image Process- ing, IEEE Transactions on, 2012, 21(9) : 4016-4028.
  • 3范文茹,王化祥,郝魁红.基于两步迭代TV正则化的电阻抗图像重建算法[J].仪器仪表学报,2012,33(3):625-630. 被引量:25
  • 4徐磊,江洁,魏振忠.总变分规整化的多帧图像超分辨率重建[J].电子测量技术,2012,35(1):76-79. 被引量:6
  • 5MARQUINA A, OSHER S J. Image super-resolution by TV-regularization and Bregman iteration [ J ]. Journal of Scientific Computing, 2008, 37: 367-382.
  • 6周鑫,胡访宇,朱高.基于核回归的正则化超分辨率重建算法[J].电子测量技术,2012,35(3):62-64. 被引量:3
  • 7杜月林,韩小萱.基于边缘检测的图像超分辨率重建研究[J].国外电子测量技术,2012,31(10):22-26. 被引量:19
  • 8DAI S, HAN M, XU W, et al. Softcuts: A soft edge smoothness prior for color image super-resolution [ J ]. Image Processing, IEEE Transactions on, 2009, 18 (5) : 969 -981.
  • 9SUN J, XU Z, SHUM H Y. Image super-resolution using gradient profile prior [ C ]. Computer viSion and Pattern Recognition, 2008. CVPR 2008. IEEE Conference ori. IEEE, 2008 : 1-8.
  • 10BRUCKSTEIN A M, DONOHO D L, CLAD M. From sparse solutions of systems of equations to sparse model- ing of signals and images [ J ]. SIAM Review, 2009, 51 (1) : 34-81.

二级参考文献77

  • 1肖创柏,段娟,禹晶.序列图像的POCS超分辨率重建方法[J].北京工业大学学报,2009,35(1):108-113. 被引量:13
  • 2刘扬阳,金伟其,苏秉华,陈华.基于超分辨力图像复原算法的模糊系统辨识[J].光电子.激光,2005,16(2):213-216. 被引量:14
  • 3胡永胜,赵军红,贺小亮.高压电力设备红外图像的边缘检测[J].国外电子测量技术,2006,25(11):56-59. 被引量:7
  • 4TSAI R Y, HUANG T S. Multi-frame image restoration and registration[C]. Advances in Computer Vision and Image Processing Greenwich, CT: JAI Press, 1984, 1: 317-339.
  • 5NG M K,SHEN H F,LAM E Y,et al. A total variation regularization based super-resolution reconstruction algorithm for digital video[J]. EURASIP Journal on Advances in Signal Processing, 2007 (10) : 1155-1171.
  • 6PARK S C,PARK M K,KANG M G. Super-resolution image reconstruction : a technical overview[J]. IEEE Signal Processing Magazine, 2003,20(3) : 21-36.
  • 7VEGA M,MOLINA R,KATSAGGELOS A. A bayesian super-resolution approach to demosaicing of blurred images[J]. EURASIP. Appl. Signal Process., 2006: 1-12.
  • 8WU C. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11 (1): 95-103.
  • 9NGUYEN N, MILANFAR P. A computationally efficient image super-resolution image reconstruction algorithm [J]. IEEE Transactions on Image Processing, 2001, 10(4) :573-583.
  • 10JUAN-FELIPE P J A,SIMON R A,RICHARD H B,et al.Comparison of methods for optimal choice of the regu-larization parameter for linear electrical impedance tomo-graphy of brain function[J].Physiological Measurement,2008,11:1319-1334.

共引文献86

同被引文献115

  • 1杨梦薇,肖秦琨,朱毅琳.基于深度残差网络的图像超分辨率重建[J].国外电子测量技术,2022,41(4):170-175. 被引量:8
  • 2浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 3陈远旭,罗予频,胡东成.基于PDE正则化的超分辨率图像重构方法[J].计算机工程,2007,33(22):4-5. 被引量:6
  • 4XIONG H, PAN Z, YE X, et al. Sparse spatio- temporal representation with adaptive regularized dictionary learning for low bit-rate video coding[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2013, 23(4):710-728.
  • 5YANG J, WANG Z, LIN Z, et al. Couple dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21 (8): 3467-3478.
  • 6YANG J, WRIGHT J, HUANG T S,et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2861-2873.
  • 7YUAN Q, ZHANG L, SHEN H. Multiframe super- resolution employing a spatially weighted total variation model[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2012, 22 ( 3 ) : 379-392.
  • 8MIAO Z, JIAJUN B, CHUN C, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing : A Publication of the IEEE Signal Processing Society, 2011, 20(5):1327-1336.
  • 9沈焕锋,李平湘,张良培,王毅.图像超分辨率重建技术与方法综述[J].光学技术,2009,35(2):194-199. 被引量:33
  • 10曹丽丽,戎蒙恬,刘文江.Scaler中图像缩放内插算法的抗混叠优化[J].信息技术,2009,33(11):1-4. 被引量:2

引证文献15

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部