期刊文献+

机械化学法合成金属有机骨架材料HKUST-1及其吸附苯性能 被引量:13

Mechano-chemical synthesis of HKUST-1 with high capacity of benzene adsorption
在线阅读 下载PDF
导出
摘要 金属有机骨架材料是一类新兴纳米多孔功能材料,研究出一种绿色环保的制备和活化金属有机骨架材料方法对于其工业应用具有重要的意义。应用机械化学法合成金属有机骨架材料(HKUST-1),并提出采用乙醇对所合成的材料进行活化和纯化,讨论不同溶剂(氯仿、乙醇)活化对合成的HKUST-1的孔隙结构和吸附性能的影响。研究结果表明:相对于传统水热法合成时间(24 h),无溶剂机械化学法反应时间缩短为30 min;活化溶剂对HKUST-1的比表面积和孔结构有较大的影响,乙醇比氯仿更容易置换出HKUST-1孔道中残留的前驱物,增大材料的比表面积,乙醇活化得到的HKUST-1比表面积高达1442.7 m2·g-1。在298 K、8 k Pa条件下,乙醇活化得到的HKUST-1对苯的吸附容量高达6.90 mmol·g-1,比氯仿活化和水热法合成的HKUST-1对苯的吸附量高约25%,而且高于同等温度压力条件下活性炭、碳分子筛、沸石等常规吸附剂对苯的平衡吸附量。 Metal-organic frameworks(MOFs) are a new class of nanoporous materials. An efficient and environmentally friendly method for the synthesis of MOFs is needed for efficient industrial applications. In this work, a porous metal-organic framework HKUST-1 was prepared by the mechano-chemical method. The effects of different activation solvents(chloroform and ethanol) on the surface area, pore structure and benzene adsorption of HKUST-1 were investigated. The mechano-chemical synthesis time of HKUST-1 could be reduced from 24 h to 30 min compared with the hydrothermal method. The surface area and pore volume of HKUST-1 were significantly affected by activation solvents. Using ethanol as an activation solvent could more easily displace the precursors remaining in the channels of HKUST-1, thus achieving a larger surface area(1442.7 m^2·g^-1) and 25% higher benzene adsorption(6.90 mmol·g^-1 at 298 K and 8 k Pa). Under the same condition, the benzene absorption capacity of the HKUST-1 sample was higher than the regular absorbents, such as activated carbon, molecular sieve and zeolite.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第2期793-799,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2013CB733506) 国家自然科学基金项目(21276092) 中央高校基本科研业务费重点项目(2013ZZ0060) 亚热带建筑科学国家重点实验室自主研究课题(2014ZC12)~~
关键词 机械化学法 HKUST-1 活化 吸附 吸附等温线 mechano-chemical method HKUST-1 activation benzene adsorption adsorption isotherm
  • 相关文献

参考文献20

  • 1Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites [J]. Chem. Rev., 2012, 112(2): 933-969.
  • 2Friscie T. New opportunities for materials synthesis using mechanoehemistry [J]. J. Mater. Chem., 2010, 20(36): 7599-7605.
  • 3Pichon A, Lazuen-Garay A, James S L. Solvent-free synthesis of a microporous metal-organic framework [J]. Cryst. Eng. Comm., 2006, 8(3): 211-214.
  • 4Beldon P J, Fabian L, Stein R S, Thirumurugan A, Cheetham A K, Friscic T. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry [J]. Angew. Chem. Int. Edit., 2010, 49(50): 9640-9643.
  • 5Yuan W B, Garay A L, Pichon A, Clowes R, Wood C D, Cooper A I, James S L. Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC=I,3,5- benzenetricarboxylate) [J]. Cryst. Eng. Comm., 2010, 12(12): 4063- 4065.
  • 6Schlesinger M, Schulze S, Hietschold M, Mehring M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H20)3] and [Cu2(btc)(OH)(H20)] [J]. Microporous Mesoporous Mater., 2010, 132(1/2): 121-127.
  • 7Klirnakow M, Klobes P, Thiinemann A F, Rademarm K, Emmerling F. Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas [J]. Chem. Mater., 2010, 22(18): 5216-5221.
  • 8Nelson A P, Farha O K, Mulfort K L, Hupp J T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials [J]. J. Am. Chem. Soc., 2009, 131(2): 458-460.
  • 9Liu J C, Culp J T, Natesakhawat S, Bockrath B C, Zande B, Sankar S G, Garberoglio G, Johnson J K. Experimental and theoretical studies of gas adsorption in Cu3(BTC)2: an effective activation procedure [J]. Phys. Chem. C, 2007, 111(26): 9305-9313.
  • 10Xiang Z H, Cao D P, Shao X H, Wang W C, Zhang J W, Wu W Z. Facile preparation of high-capacity hydrogen storage metal-organic frameworks: a combination of microwave-assisted solvothermal synthesis and supercritical activation [J]. Chem. Eng. ScL, 2010, 65(10): 3140-3146.

同被引文献139

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部