期刊文献+

基于结构支持向量机的目标检测跟踪同步算法 被引量:3

Tracking by Detection Algorithm Based on Structured Support Vector Machine
在线阅读 下载PDF
导出
摘要 目标检测跟踪同步算法通过对视频帧的目标实时检测来达到跟踪的目的,该算法主要是为了维持一个能够在线训练的分类器,把从背景采样的样本作为负样本,从目标区域采样的样本作为正样本,然后通过分类器把二者区分开,以达到跟踪效果。然而当目标产生形变以及目标区域发生遮挡的时候,如何对样本采样和精确标记成为跟踪成败的关键。在结构支持向量机的框架下,提出一种基于结构支持向量机的目标检测跟踪同步算法。由于结构支持向量机的输出可以是复杂的数据结构,因此采用结构支持向量机,把目标位置估计作为结构支持向量机的输出,避免了对样本标记精确估计的需要,克服了当目标发生遮挡和大范围变形时导致的跟踪失败。仿真实验表明,该算法有良好稳定的跟踪效果。 The tracking by detection algorithm implements target tracking by detecting the target in each frames in real time.This algorithm aims to maintain an online training classifier,which intends to separate the target from the background for tracking by taking the samples from the background area as negative samples and from the target area as positive samples.But when the target was sheltered,or the shape of target changed in a large scale,how to sample and mark the samples accurately was critical for success tracking.A tracking by detection algorithm was proposed based on structured Support Vector Machine (SVM).Since the output of structured SVM can be very complex data structure,the position of the target was taken as the output of the structured SVM,which can overcomes tracking drift problem when the target was sheltered or the shape of target changed greatly.Experimental results show that the proposed algorithm has a good and stable tracking performance.
作者 李飞 王从庆
出处 《电光与控制》 北大核心 2014年第12期49-52,70,共5页 Electronics Optics & Control
关键词 目标跟踪 目标检测 结构学习 支持向量机 target tracking target detection structured learning support vector machine
  • 相关文献

参考文献15

  • 1GRABNER H, BISCHOF H. On-line boosting and vision [ C]//IEEE Computer Society Conference on Compuler Vision and Pattern Recognition, 2006, 1:260-267.
  • 2GRABNER H, LEISTNER C, BISCHOF H. Semi-super- vised on-line boosting for robust tracking[ C ]//Computer Vision-ECCV, Springer Berlin Heidelberg, 2008:234-247.
  • 3STALDER S, GRABNER H, VAN GOOL L. Beyond semi- supervised tracking:Tracking should he as simple as de- tectinn, but not simpler than recognition [ C ]//IEEE 12th International Conference on Computer Vision Workshops ( ICCV Workshops), 2009 : 1409-1416.
  • 4GRABNER H, GRABNER. M, BISCHOF H. Real-time. tracking vial on-line boosting[ C]//British Machine Vision Conference, 2006 : 1 - 10.
  • 5AVIDAN S. Supporl vector tracking [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2004, 26( 8 ) : 1064-1072.
  • 6BABENKO B, YANG M H, BEI.ONGIE S. Visual tracking with online multiple instance learning[ C ]//IEEE Con- ference on Computer Vision and Pattern Recognition ( CVPR ), 2009:983-990.
  • 7ZEISL B, LEISTNER C, SAFFARI A, el al. On-line semi- supervised multiple-instance boosting [ C ]//IEEE Con- ference on Computer Vision and Pattern Recognition (CVPR), 2010 : 1879.
  • 8NOWOZIN S, LAMPERT C H. Structured learning and prediction in computer vision [ M ]. Boston: Now publish- ers Inc, 2011.
  • 9BERTELLI L, YU T, VU D, et al. Kernelized structural SVM learning for supervised object segmentation [ C ]// IEEE Conference on Computer Vision and Pattern Recog- nition(CVPR), 2011:2153-2160.
  • 10HARE S, SAFFARI A, TORR P H S. Struck : Structured output tracking with kernels [ C ]//IEEE International Conference on Computer Vision(ICCV), 2011:263-270.

二级参考文献15

  • 1代六玲,黄河燕,陈肇雄.一种文本分类的在线SVM学习算法[J].中文信息学报,2005,19(5):11-15. 被引量:13
  • 2Porikli F.Integral histogram:a fast way to extract histograms in Cartesian spaces [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:829-836.
  • 3Wijinhover R G J. Fast training of object detection using stochastic gradient descent[C].20th International Conference on Pattern Recognition,2010:424-427.
  • 4Nanni Loris.Lumini alessandra.Local binary patterns for a hy- brid fingerprint matcher [J]. Pattern Recognition, 2008,41 (11): 3461-3466.
  • 5Dalai N,Triggs B.Histograms of oriented gradients for human detection[C].Proceedings of IEEE Computer Society Conferen- ce on Computer Vision and Pattern Recognition,2005:886-893.
  • 6Ross D,Lim J, Yang M H.Probabilistic visual tracking with incre- mental subspace update[C].Proceedings of ECCV,2004:470-482.
  • 7汪凯斌,俞卞章,李会方,奚玮.基于LBP驱动的区域围道纹理分割模型[J].西北工业大学学报,2007,25(5):712-715. 被引量:4
  • 8哈明虎,彭桂兵,赵秋焕,马丽娟.一种新的模糊支持向量机[J].计算机工程与应用,2009,45(25):151-153. 被引量:7
  • 9韩宁,闫德勤.基于支持向量机的鲁棒盲水印算法[J].计算机工程与设计,2009,30(22):5273-5275. 被引量:5
  • 10高越,赵丹培,姜志国.复杂环境下的鲁棒目标跟踪方法[J].计算机辅助设计与图形学学报,2010,22(5):817-822. 被引量:11

共引文献1

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部