期刊文献+

抽拉速率对Ti-47.5Al-6Nb-2Cr-0.5Si合金定向凝固组织的影响 被引量:1

Effect of Drawing Rate on Directional Solidification Microstructure of Ti-47.5Al-6Nb-2Cr-0.5Si Alloy
在线阅读 下载PDF
导出
摘要 采用感应加热定向凝固炉对Ti-47.5Al-6Nb-2Cr-0.5Si(at%)合金在抽拉速率6、15、25、100μm/s下进行定向凝固实验。结果表明:抽拉速率为6μm/s时,固/液界面是胞枝状,片层取向与生长方向夹角为45°,初生相为β相;抽拉速率为15~100μm/s时,固/液界面以树枝状向前推进,且随着抽拉速率的增加,一次枝晶间距减小,片层取向与生长方向的夹角由45°向90°转变,初生相由β相转变为α相;抽拉速率大于6μm/s时,组织中出现硅化物析出相,且随着抽拉速率的增大,析出相越来越多,分布变密,沿生长方向逐渐成线条状。 Directional solidification experiments of Ti-47.5A1-6Nb-2Cr-0.5Si (at%)alloy were conducted by using induction heating furnace at the drawing rates of 6, 15, 25 and 100 μm/s. The results show that: when the drawing rate is 6 μm/s, the solid/liquid interface is cellular dendrite, the angel between the lamellar orientation and growth direction is 45°, and the primary phase is β phase. When the drawing rate is 15--100 μm/s, the solid/liquid interface pushes ahead in dendritic interface, and the primary dendritic spacing decreases with increasing the drawing rate. Correspondingly, the angel between the lamellar orientation and growth direction varies from 45° to 90°, and the primary phase varies from β phase to ct phase. When the drawing rate is greater than 6 izm/s, silieide precipitated phase appears in microstructure. As the drawing rate increases, the precipitated phase becomes more and more. The distribution is denser and denser, and the precipitated phase connects into lines along the growth direction gradually.
出处 《热加工工艺》 CSCD 北大核心 2015年第1期11-14,共4页 Hot Working Technology
基金 国家自然科学基金项目(51174167) 凝固技术国家重点实验室自主研究课题项目(63-TP-2011)
关键词 TIAL合金 定向凝固 片层组织 抽拉速率 TiA1 alloy directional solidification lamellar microstructure drawing rate
  • 相关文献

参考文献10

  • 1Ding X FoLin J P,Zhang L Q,et al. Microstructural control of TiAI-Nb alloys by directional solidification[J]. Acta Materialia, 2012,60:498-506.
  • 2Yang Jieren ,Chen Ruirun, Ding Hongsheng, et al. Heat transfer and macrostructure formation of Nb containing TiAI alloy directionally solidified by square cold crucible [J]. Intermetallics, 2013,42 : 184-191.
  • 3孙红亮,黄泽文,朱德贵.热处理对Ti-44Al-4Nb-4Zr-1B合金组织和性能的影响[J].热加工工艺,2013,42(2):187-189. 被引量:7
  • 4Inui H,Oh M H,NaKamura A,et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiA1 [J]. Acta Metallurgica et Materialia, 1992,40(11 ): 3095 -3104.
  • 5Yamaguchi M,Johnson D R,Lee H N ,et al. Directional solidi- fication of TiAl-base alloys [J]. Intermetallics,2000 (8): 511-517.
  • 6林均品,张来启,宋西平,叶丰,陈国良.轻质γ-TiAl金属间化合物的研究进展[J].中国材料进展,2010,29(2):1-8. 被引量:61
  • 7Wen Deng,Huang Y Y,Wu D H,et al. Effects of Cr and Sn on defects and electron densities in TiAI alloys [J]. Materials Letters, 2002,56(4):593-596.
  • 8Sun F S,Froes F H. Solidification behavior of Ti5Si3 whiskers in TiA1 alloys [J]. Materials Science and Engineering A, 2003, 345(1/2):262-269.
  • 9Johnson D R,Inui H,Muto S, et al. Microstructural develop- ment during directional solidification of α-seeded TiAI alloys [J], Acta Materialia, 2006,54 : 1077-1085.
  • 10Kim M C,Oh M H, Lee J H,et al. Composition and growth rate effects in directionally solidified TiAI alloys [J]. Materials Science and Engineering A,1997,239/240:570-576.

二级参考文献9

共引文献66

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部