期刊文献+

一种顾及空间物理约束的多密度网格聚类算法

Multi-Density Grid Clustering Algorithm Considering the Physical Constrains in Space
在线阅读 下载PDF
导出
摘要 提出了一种顾及空间物理约束的多密度网格聚类算法。该算法通过对障碍物和便利体两种物理约束的数据化处理,降低了聚类的复杂度。利用既有聚类数据又有障碍物的网格单元的二次分割方式来提高聚类精度。针对不同便利体对聚类影响的差异,引入便利度概念。用网格单元密度、单元间质心的曼哈顿距离和便利度三因素来构造判别函数,判别单元间的相似关系。理论分析和实验结果表明,在有任意形状物理约束的空间中,该算法能有效地对不同形状、大小和密度的数据集聚类。 A multi-density grid clustering algorithm to consider the physical constrains in space was proposed in this study. This algorithm can reduce the complexity of clustering through the data processing of the obstacles and facilitating body. The secondary segmentation approach of grid cells with both objective data and obstacles was used to improve the accuracy of clustering. The concept of convenience degree was introduced to target on the differences of the effect from the convenience to the clustering. A discriminant function, which was configured by inter-grid cell density, Manhattan distance between cell centroid and convenience, was used to discriminate the similarity relationship between cells. Theoretical analysis and experimental results showed that, in space with random shape of physical constrains,the algorithm could effectively cluster different shapes,sizes and density data.
作者 李光兴
出处 《测绘科学技术学报》 CSCD 北大核心 2014年第6期587-592,共6页 Journal of Geomatics Science and Technology
关键词 网格聚类 物理约束 单元 便利度 判别函数 grid clustering physical constrains cell facilitator degree discriminant function
  • 相关文献

参考文献12

  • 1WANG X,GU W,ZIEBELIN D,et al.An Ontology-Based Framework for Geospatial Clustering[J].International Journal of Geographical Information Science,2010,24(11):1601-1630.
  • 2张雪萍,杨腾飞,王家耀,秦奋,魏欣.量子粒子群优化的城市公园选址应用研究[J].计算机工程与应用,2011,47(29):235-238. 被引量:3
  • 3张小朋,葛文,王鹏波,蔡畅.基于地形图分析的空间数据挖掘系统的设计与实现[J].海洋测绘,2008,28(4):60-62. 被引量:1
  • 4TUNG A K H,HOU J,HAN J.Spatial Clustering in the Presence of Obstacles[J].Data Engineering,2001,1:368-375.
  • 5张小朋,武芳,孟岩斌,张景辉.一种利用凸包思想顾及障碍物的聚类分析[J].测绘科学技术学报,2008,25(2):145-148. 被引量:2
  • 6ESTIVILL-CASTRO V,LEE I.Autoclust+:Automatic Clustering of Point-Data Sets in the Presence of Obstacles[J].Lecture Notes in Computer Science,2001,2007:133-146.
  • 7WANG X,ROSTOKER C,HAMILTON H J.A Density-Based Spatial Clustering for Physical Constraints[J].Journal of Intelligent Information Systems,2012,38(1):269-297.
  • 8WANG X,HAMILTON H J.DBRS:A Density-Based Spatial Clustering Method with Random Sampling[J].Lecture Notes in Computer Science,2003,2637:563.-575.
  • 9DUHAN N,SHARMA A K.DBCCOM:Density Based Clustering with Constraints and Obstacle Modeling[J].Contemporary Computing,2011,168:212-228.
  • 10PARK S H,LEE J H,KIM D H.Spatial Clustering Based On Moving Distance in the Presence of Obstacles[J].Lecture Notes in Computer Science,2007,4443:1024-1027.

二级参考文献34

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部