期刊文献+

在线BCI高速数据流的可预测并发实时传输

Predicable,concurrent and real-time transmission of high-speed data streams in online BCI
在线阅读 下载PDF
导出
摘要 基于多分类运动想象的在线BCI(brain computer interface,脑机接口)中,如何实时处理高速EEG(electroencephalogram,脑电)数据流是实现在线意识识别的难点,其关键是高速计算和复杂情况下的预测问题。以线程并发作为解决高速计算问题的切入点,首先将EEG信号分析任务分解为多个线程子任务,并通过缓冲区管理策略解决线程并发带来的协同问题,针对高速EEG数据流的复杂变化问题,采用自适应单向模糊推理的方法预测数据流伸缩变化,并针对线程并发造成的中间结果的错序问题,设计信号量互斥与同步方法对中间数据块进行顺序重组。针对多名受试者的大量实验显示,单次Trial平均延迟时间明显减少。因此,线程并发和模糊推理能够解决在线BCI系统的高速计算和预测问题,从而提高信息传输率。 About online BCI based on multi-class motor imagery, how to handle high-speed EEG data streams is a difficulty for the realizing of online awareness recognition, and the key is high-speed computing and prediction under complicated condi- tions. This paper took thread concurrency as the entry point of high-speed computing, firstly, it decomposed the task of EEG signal analysis into more thread subtasks, and solved the coordination problem brought by thread concurrency with buffer man- agement policies; then, for the complicated change of high-speed EEG data streams, it adopted adaptive one-sided fuzzy infer- enee to predict the telescopic change of data streams; lastly, against the disorders of intermediate result due to thread concur- rency, it designed a method of mutual exclusion and synchronization with semaphore to recombine the intermediate data blocks orderly. Numerous experiments with multiple subjects show that the average delay time of a single Trial decreases obviously. Therefore, thread concurrency and fuzzy inference can solve the problem of high-speed computing and prediction in online BCI, and improve the information transmission rates.
出处 《计算机应用研究》 CSCD 北大核心 2015年第3期794-799,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(60841004 60971110 61172152) 郑州市科技攻关(112PPTGY219-8) 河南省青年骨干教师计划资助项目(2012GGJS-005)
关键词 在线BCI 高速EEG数据流 并发 自适应单向模糊推理 生产—消费协同 online BCI high-speed EEG data streams concurrency adaptive one-sided fuzzy inference coordination ofproduction -consumption
  • 相关文献

参考文献4

二级参考文献39

  • 1李洪兴,苗志宏,王家银.Variable universe adaptive fuzzy control on the quadruple inverted pendulum[J].Science China(Technological Sciences),2002,45(2):213-224. 被引量:13
  • 2罗志增,王人成.仿生电动假手的研究[J].仪器仪表学报,2005,26(7):674-677. 被引量:7
  • 3万柏坤,綦宏志,赵丽,陈滨津,毕卡诗,陈骞.基于脑电Alpha波的脑-机接口控制实验[J].天津大学学报,2006,39(8):978-984. 被引量:18
  • 4罗志增,王人成.基于表面肌电信号的前臂手部多运动模式识别[J].仪器仪表学报,2006,27(9):996-999. 被引量:18
  • 5Koles Z J. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG[J].Electroencephalography and Clinical Neurophysiology , 1991,79(6) :440 - 447,.
  • 6Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 (5) :787 - 798.
  • 7Ramoser H, Miiller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (4) : 441 - 446.
  • 8Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern ( SBCSP ) for brain-computer interface [ C ]//3rd International IEEE/EMBS Conference on Neural Engineering. [S. 1. ] : IEEE, 2007 : 204 - 207.
  • 9Li Y, Gao X, Liu H, et al. Classification of single-trial electroencephalogram during finger movement [ J 3. IEEE Transactions on Biomedical Engineering, 2004,51 (6) : 1019 - 1025.
  • 10Chang C C, Lin C J. LIBSVM: a library for support vector machines[ EB/OL ]. [ 2009 - 04 - 17 ]. http://www, csie. ntu. edu. tw/-cjlin/libsvm.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部