期刊文献+

限制速度粒子群优化和自适应速度粒子群优化在无约束优化问题中的应用 被引量:15

Application of restricted velocity particle swarm optimization and self-adaptive velocity particle swarm optimization to unconstrained optimization problem
在线阅读 下载PDF
导出
摘要 限制速度粒子群优化(RVPSO)和自适应速度粒子群优化(SAVPSO)是近年来提出的专门求解约束优化问题(COP)的粒子群优化算法,但目前尚无两算法在无约束优化应用方面的研究。为此,研究上述算法在无约束优化中的有效性和性能特点,并针对算法保守性较强的特点,分别引入混沌因子和随机优化策略对算法进行改进,从而提高算法的全局搜索能力;另外,还研究了不同参数设置对算法性能的影响。在5个典型测试函数上的仿真实验结果表明:RVPSO改进算法的鲁棒性及全局搜索能力优于原算法,但在求解高维多峰函数时仍易于陷入局部最优;SAVPSO改进算法的全局搜索能力比RVPSO改进算法强,且在求解高维多峰函数时具有更快的收敛速度并能取得精度更高的解,表现出较好的全局优化能力,是一种切实有效的求解无约束优化问题的算法。 Restricted Velocity Particle Swarm Optimization (RVPSO) and Self-Adaptive Velocity Particle Swarm Optimization (SAVPSO) are two recently proposed Particle Swarm Optimization (PSO) algorithms specially for solving Constrained Optimization Problem (COP), but to our knowledge, no research has been done on the applications of the two algorithms to Unconstrained Optimizations Problem (UOP). To this end, the effectiveness and performance characteristics of the two algorithms in UOP were investigated. Moreover, in view of their relatively strong conservativeness, the algorithms were improved by combining chaos factor and random strategy respectively with the search mechanism to enhance their global exploration ability. Also, the effects of different parameter settings on the performance of all these algorithms were studied. The performance of all these algorithms was evaluated on 5 typical benchmark functions. Experimental and comparison results show that the improved RVPSO is better than RVPSO in terms of robustness and global exploration ability, but it may easily get trapped into local optima when solving high-dimensional muhi-modal functions; the improved SAVPSO has stronger exploration ability and faster convergence rate than improved RVPSO, and it can achieve more accurate solutions when applied to high-dimensional muhi-modal tunctions. Therefore, the improved SAVPSO has competitive ability of global optimization, and thus is an effective algorithm for solving unconstrained optimization problems.
机构地区 江南大学理学院
出处 《计算机应用》 CSCD 北大核心 2015年第3期668-674,684,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(11371174) 中央高校基本科研业务费专项资金资助项目(1142050205135260 JUSRP51317B) 江南大学大学生创新训练计划项目(2013239)
关键词 无约束优化问题 约束优化问题 限制速度粒子群优化 自适应速度粒子群优化 Unconstrained Optimization Problem (UOP) Constrained Optimization Problem (COP) Restricted VelocityParticle Swarm Optimization (RVPSO) Self-Adaptive Velocity Particle Swarm Optimization (SAVPSO)
  • 相关文献

参考文献19

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Network. Piscataway: IEEE, 1995,4:1942-1948.
  • 2LU H, CHEN W. Dynamic-objective particle swarm optimization for constrained optimization problems[J]. Journal of Combinatorial Optimization, 2006,12(4):409-419.
  • 3LU H, CHEN W. Self-adaptive velocity particle swarm optimization for solving constrained optimization problems[J]. Journal of Global Optimization, 2008,41(3):427-445.
  • 4李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 5CUI Z, ZENG J. A guaranteed global convergence particle swarm optimizer[C]//Proceedings of the 4th International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 2004:762-767.
  • 6黄少荣.基于随机参数的粒子群优化算法[J].重庆师范大学学报(自然科学版),2013,30(6):123-127. 被引量:6
  • 7曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 8MONSTAGHIM S, TEICH J. Strategies for finding good local guides in Multi-Objective Particle Swarm Optimzation (MOPSO)[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Piscataway: IEEE, 2003:26-33.
  • 9赵远东,方正华.带有权重函数学习因子的粒子群算法[J].计算机应用,2013,33(8):2265-2268. 被引量:68
  • 10胥小波,郑康锋,李丹,武斌,杨义先.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30. 被引量:127

二级参考文献100

共引文献1272

同被引文献126

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部