期刊文献+

Theoretical study of the optical gain characteristics of a Ge_(1-x)Sn_x alloy for a short-wave infrared laser 被引量:1

Theoretical study of the optical gain characteristics of a Ge_(1-x)Sn_x alloy for a short-wave infrared laser
在线阅读 下载PDF
导出
摘要 Optical gain characteristics of Ge1-xSnμx are simulated systematically.With an injection carrier concentration of 5×10^18/cm^3 at room temperature,the maximal optical gain of Ge0.922Sn0.078 alloy(with n-type doping concentration being 5×10^18/cm^3) reaches 500 cm^-1.Moreover,considering the free-carrier absorption effect,we find that there is an optimal injection carrier density to achieve a maximal net optical gain.A double heterostructure Ge0.554Si0.289Sn0.157/Ge0.922Sn0.078/Ge0.554Si0.289Sn0.157 short-wave infrared laser diode is designed to achieve a high injection efficiency and low threshold current density.The simulation values of the device threshold current density Jth are 6.47 kA/cm^2(temperature:200 K,and λ=2050 nm),10.75 kA/cm^2(temperature:200 K,and λ=2000 nm),and23.12 kA/cm^2(temperature:300 K,and λ=2100 nm),respectively.The results indicate the possibility to obtain a Si-based short-wave infrared Ge1-xSnx laser. Optical gain characteristics of Ge1-xSnμx are simulated systematically.With an injection carrier concentration of 5×10^18/cm^3 at room temperature,the maximal optical gain of Ge0.922Sn0.078 alloy(with n-type doping concentration being 5×10^18/cm^3) reaches 500 cm^-1.Moreover,considering the free-carrier absorption effect,we find that there is an optimal injection carrier density to achieve a maximal net optical gain.A double heterostructure Ge0.554Si0.289Sn0.157/Ge0.922Sn0.078/Ge0.554Si0.289Sn0.157 short-wave infrared laser diode is designed to achieve a high injection efficiency and low threshold current density.The simulation values of the device threshold current density Jth are 6.47 kA/cm^2(temperature:200 K,and λ=2050 nm),10.75 kA/cm^2(temperature:200 K,and λ=2000 nm),and23.12 kA/cm^2(temperature:300 K,and λ=2100 nm),respectively.The results indicate the possibility to obtain a Si-based short-wave infrared Ge1-xSnx laser.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期191-197,共7页 中国物理B(英文版)
基金 supported by the Major State Basic Research Development Program of China(Grant No.2013CB632103) the National High-Technology Research and Development Program of China(Grant No.2012AA012202) the National Natural Science Foundation of China(Grant Nos.61177038 and 61176013)
关键词 infrared GeSn alloys semiconductor lasers OPTOELECTRONIC infrared, GeSn alloys, semiconductor lasers, optoelectronic
  • 相关文献

参考文献25

  • 1Reed G T and Knights A P 2008 Silicon Photonics (Chichester; Hobo?ken, NJ:John Wiley & Sons).
  • 2LiuJ, Sun X, Pan D, Wang X, Kimerling L C, Koch T L and MichelJ 2007 Opt. Express 15 11272.
  • 3LiuJ F, Sun X C, Kimerling L C and MichelJ 2009 Opt. Lett. 34 1738.
  • 4Camacho-Aguilera R E, Cai Y, Patel N, BessetteJ T, Romagnoli M, Kimerling L C and MichelJ 2012 Opt. Express 20 11316.
  • 5Wang W, Su SJ, ZhengJ, Zhang G Z, Zuo Y H, Cheng B Wand Wang Q M 2011 Chin. Phys. B 20 068103.
  • 6Su SJ, Cheng B W, Xue C L, Wang W, Cao Q A, Xue H Y, Hu W X, Zhang G Z, Zuo Y H and Wang Q M 2011 Opt. Express 196408.
  • 7Zhang D L, Xue C L, Cheng B W, Su SJ, Liu Z, Zhang X, Zhang G Z, Li C B and Wang Q M 2013 Appl. Phys. Lett. 102 141111.
  • 8Yin WJ, Gong X G and Wei S H 2008 Phys. Rev. B 78161203.
  • 9D'Costa V R, Fang Y Y, TolleJ, KouvetakisJ and MenendezJ 2009 Phys. Rev. Lett. 102 107403.
  • 10MathewsJ, Beeler R T, TolleJ, Xu C, Roucka R, KouvetakisJ and MeneendezJ 2010 Appl. Phys. Lett. 97221912.

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部