期刊文献+

高分辨率遥感影像分割方法研究 被引量:11

Study on Segmentation Methods of High Resolution Remote Sensing Images
在线阅读 下载PDF
导出
摘要 在遥感应用分析中,遥感影像分割是低层影像处理和中高层影像分析和理解的桥梁,是实现遥感影像信息自动提取的关键步骤,具有重要的意义。随着大量高分辨率遥感影像的出现,传统基于像素的影像处理方法已不能适应高分辨率遥感影像。近年来,国内外研究者们提出了面向对象影像的分析方法,而面向对象影像分析方法的关键就是影像分割,影像分割精度直接影响着高分辨率遥感信息提取和目标识别的精度。首先给出一般图像分割方法的综述;然后分析和总结了当前主要的高分辨率遥感影像分割方法,着重阐述了均值漂移、分形网络进化、马尔科夫随机场等分割方法的特点和研究现状;最后,对高分辨率遥感应用分析中影像分割方法的发展趋势进行了讨论与展望。 In remote sensing application analysis,image segmentation is the bridge between low- level image processing and high-level image analysis and understanding. It is also the first step to realize automatic extraction from remote sensing images and is of great significance. As a large number of high resolution remote sensing images are obtained,traditional image segmentation methods are not meeting the rising demands of high resolution remote sensing image analysis. In recent years,object- based image analysis( OBIA) method is proposed by domestic and foreign researchers. The key of OBIA is image segmentation which directly influences the accuracy of high resolution remote sensing information extraction and target recognition. In this paper,a review of general image segmentation methods are firstly given,then remote sensing image segmentation methods which are widely used at present are summarized and analyzed. Characteristics and research status of methods such as Mean Shift algorithm,FNEA,MRF etc. are focused on. In the end,the development tendency of image segmentation in high resolution remote sensing application analysis is discussed and prospected.
出处 《测绘与空间地理信息》 2014年第10期44-49,共6页 Geomatics & Spatial Information Technology
基金 国家自然科学基金青年项目(41201463) 国家973项目(2012CB719906) 国家863项目(2012AA121403) 云南省教育厅基金项目(2011Y311) 江苏省资源环境信息工程重点实验室开放基金项目(JS201301)资助
关键词 高分辨率遥感影像 分割 面向对象影像分析 high resolution remote sensing images segmentation OBIA
  • 相关文献

参考文献35

  • 1Pohl C, Van Genderen J. Review article multisensor im- age fusion in remote sensing: concepts, methods and ap- plications [ J ]. International Journal of Remote Sensing, 1998,19 (5) :823 - 854.
  • 2元秀,晓阳.高分辨率卫星影像处理指南[M].北京:科学出版社,2008.
  • 3章毓晋.图像工程[M].(第2版).北京:清华大学出版社有限公司,2005.
  • 4BeaulieuJ M, Goldberg M. Hierarchy in picture segmenta- tion : A stepwise optimization approach [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1989, 11(2) :150 - 163.
  • 5Zhang Y, Gerbrands J J. Transition region determination based thresholding [ J ]. Pattern Recognition Letters, 1991, 12(1) : 13 -23.
  • 6谈国军,戎皓.基于二维最大熵阈值图像分割技术的改进方法[J].教育技术导刊,2008(1):3-4. 被引量:3
  • 7陈涛,卜佳俊.一种新颖的基于边缘检测的图像分割方法[J].计算机工程,2003,29(7):152-154. 被引量:5
  • 8赵雪松,陈淑珍.综合全局二值化与边缘检测的图像分割方法[J].计算机辅助设计与图形学学报,2001,13(2):118-121. 被引量:66
  • 9Chang Y L, Li X. Adaptive image region - growing [ J ] IEEE Transactions on Image Processing, 1994, 3 (6) 868 - 872.
  • 10Strasters K C, Gerbrands J J. Three - dimensional image segmentation using a split, merge and group approach [J]. Pattern Recognition Letters, 1991, 12 (5) : 307 - 325.

二级参考文献34

  • 1陈敏.一种自动识别最优阈值的图像分割方法[J].计算机应用与软件,2006,23(4):85-86. 被引量:31
  • 2黄建忠.彩色图像处理及其在影视业务中的若干应用研究(博士学位论文)[M].武汉:华中理工大学,1997..
  • 3Ryherd S,Woodcock C.Combining Spectral and Texture Data in the Segmentation of Remotely-Sensed Images [ J ].Photogrammetric Engineering & Remote Sensing, 1996, 62 (2) :181-194.
  • 4Chellappa R, Chatterjee S. Classification of Textures Using Gaussian Markov Random Fields [ J ]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (4) : 959-963.
  • 5Torres-Torriti M, Jouan A. Gabor vs. GMRF Features for SAR Imagery Classification [ A ]. ICIP [ C ]. 2001, (3) : 1043-1046.
  • 6Clausi D A, Bing Yue. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42( 1 ) : 215-228.
  • 7Rellier G, Descombes X, Falzon F, et al. Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (7) : 1543-1551.
  • 8Chellappa R, Hu Y H, Kung S Y. On Two-Dimensional Markov Spectral Estimation[ J]. IEEE Transactions on Acoustics, Speech,and Signal Processing, ASSP , 1983, 31(4) : 836-841.
  • 9Tseng D C, Lai C C. A Genetic Algorithm for MRF-Based Segmentation of Multispectral Textured Images [ J ]. Pattern Recognition Letters, 1999, 20 : 1499-1510.
  • 10Sharma G, Chellappa R. A Model-Based Approach for Estimation of Two-Dimensional Maximum Entropy Power Spectra [ J ]. IEEE Transactions on Information Theory, 1985, 31( 1 ) : 90-99.

共引文献119

同被引文献108

引证文献11

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部