期刊文献+

基于改进蚁群算法的云计算任务调度模型 被引量:37

Cloud Computing Task Scheduling Model Based on Improved Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 为解决云环境下的资源调度问题,提出一种能改善任务并行性与兼顾任务串行关系的调度模型,将用户提交的动态任务分割成具有制约关系的子任务,按运行次序放到具有不同优先级的调度队列中。针对同一调度队列中的子任务,采用基于最短任务延迟时间的改进蚁群算法(DSFACO)进行调度,在兼顾调度公平性与效率的前提下,最大化缩短任务延迟时间,从而提高用户满意度。实验结果表明,与任务调度增强蚁群算法相比,DSFACO算法在任务延迟时间、调度公平性及效率方面性能更好,能实现云计算环境下任务的最优调度。 To solve the problem of resource scheduling problem in cloud computing,a parallel scheduling model is proposed,which can improve the task parallelism while maintaining the serial relationships between tasks.Dynamic tasks submitted by users are divided into sub-tasks in some serial sequences,and it puts into scheduling queue with different priorities according to running order.For these tasks in the same priority scheduling queue,an improved Delay Time Shortest and Fairness Ant Colony Optimization(DSFACO) algorithm is applied to schedule.Considering both fairness and efficiency,DSFACO algorithm applies to subtask scheduling problem to realize shortest delay time,thus improves the user satisfaction.Experimental results show DSFACO algorithm is better than the TS-EACO algorithm in fairness,efficiency and task delay time,and it can realize the optimal scheduling in cloud computing.
作者 魏赟 陈元元
出处 《计算机工程》 CAS CSCD 北大核心 2015年第2期12-16,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61170277) 上海市教委科研创新基金资助项目(12YZ094)
关键词 云计算 蚁群算法 任务调度 公平性 任务延迟时间 cloud computing ant colony algorithm task scheduling fairness task delay time
  • 相关文献

参考文献13

  • 1Armbmst M,Fox A,Griffith R,et al.Above the Clouds:A Berkeley View of Cloud Computing[R].University of California,Berkeley,Technical Report:UCB/EECS-2009-28,2009.
  • 2祝家钰,肖丹.云计算环境下基于路径优先级的任务调度算法[J].计算机工程与设计,2013,34(10):3511-3515. 被引量:9
  • 3孙月,于炯,朱建波.云计算中一种多DAG工作流可抢占式调度策略[J].计算机科学,2014,41(3):145-148. 被引量:8
  • 4Dorigo M,Blum C.Ant Colony Optimization Theory:A Survey[J].Theoretical Computer Science,2005,344(2/3):243-278.
  • 5Gao Y.A Multi-objective Ant Colony System Algorithm for Virtual Machine Placement in Cloud Computing[J].Journal of Computer and System Sciences,2013,79(8):1230-1242.
  • 6Dorigo M,Birattari M,Stutzel T.Ant Colony Optimization[J].IEEE Computational Intelligence Magazine,2006,1(4):28-39.
  • 7Huang Qiyi,Huang Tinglei.An Optimistic Job Scheduling Strategy Based on Qo S for Cloud Com-puting[C]//Proceedings of 2010 IEEE International Conference on Intelligent Computing and Integrated Systems.[S.l.]:IEEE Press,2010:673-675.
  • 8Sanyal M G.Survey and Analysis of Optimal Scheduling Strategies in Cloud Environment[C]//Proceedings of IEEE International Conference on Information and Communication Technologies.[S.l.]:IEEE Press,2012:789-792.
  • 9Chang F,Ren J,Viswanathan R.Optimal Resource Allocation in Clouds[C]//Proceedings of the 3rd International Conference on Cloud Computing.[S.l.]:IEEE Press,2010:418-425.
  • 10查英华,杨静丽.改进蚁群算法在云计算任务调度中的应用[J].计算机工程与设计,2013,34(5):1716-1719. 被引量:31

二级参考文献58

  • 1米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 2FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 3ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 4BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 5CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 6KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.
  • 7ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52.
  • 8DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ C]//Proceedings of the 6th Symposium on Operating System Design and Implementation. New York: ACM, 2004:137 - 150.
  • 9The CLOUDS Lab. Gridsim[ EB/OL]. [ 2010 - 06 - 25]. http:// www. cloudbus. org/gridsim/.
  • 10王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..

共引文献240

同被引文献288

引证文献37

二级引证文献258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部