期刊文献+

带一步随机延迟量测非线性序列贝叶斯估计的条件后验克拉美罗下界 被引量:7

Conditional Posterior Cramr-Rao Lower Bound for Nonlinear Sequential Bayesian Estimation with One-step Randomly Delayed Measurements
在线阅读 下载PDF
导出
摘要 为了解决带一步随机延迟量测非线性状态估计器可获得最优性能的评价问题,提出了一种适用于带一步随机延迟量测非线性系统的条件后验克拉美罗下界(Conditional posterior Cram′er-Rao lower bound,CPCRLB),且现有的CPCRLB仅是所提出的CPCRLB在延迟概率为零时的一种特例.为了递归地计算提出的CPCRLB,本文提出了一种带一步随机延迟量测的粒子滤波器(Particle filter,PF),继而推导了提出的CPCRLB一般近似解和在高斯噪声情况下的特殊近似解.单变量非平稳增长模型、纯方位跟踪和频率调制信号模型的数值仿真证明了本文提出方法与现有方法相比的有效性和优越性. In order to solve the problem of assessing the achievable optimal performance of nonlinear state estimator with one-step randomly delayed measurements, a new conditional posterior Cram′er-Rao lower bound(CPCRLB) for nonlinear systems with one-step randomly delayed measurements is proposed. The existing CPCRLB is only a special case of the proposed CPCRLB when the latency probability is zero. In order to calculate the proposed CPCRLB recursively, a new particle filter(PF) with one-step randomly delayed measurements is proposed, based on which a general approximate formulation and a special approximate formulation for Gaussian noises case of the proposed CPCRLB are developed. The effectiveness and superiority of the proposed method as compared with the existing methods are illustrated in numerical examples concerning univariate non-stationary growth model, bearings-only tracking and frequency modulated signal model.
出处 《自动化学报》 EI CSCD 北大核心 2015年第3期559-574,共16页 Acta Automatica Sinica
基金 国家自然科学基金(61001154 61201409 61371173) 中国博士后科学基金(2013M530147 2014T70309) 黑龙江省博士后基金(LBHZ13052 LBH-TZ0505) 哈尔滨工程大学中央高校基本科研业务费专项基金(HEUCFX41307)资助~~
关键词 条件克拉美罗下界 一步随机延迟量测 粒子滤波器 非线性滤波 贝叶斯估计 Conditional posterior Cramér-Rao lower bound(CPCRLB) one-step randomly delayed measurements particle filter(PF) nonlinear filter
  • 相关文献

参考文献29

  • 1Arasaratnam I, Haykin S. Cubature Kalman filter. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 2Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2): 510-518.
  • 3张勇刚,黄玉龙,武哲民,李宁.一种高阶无迹卡尔曼滤波方法[J].自动化学报,2014,40(5):838-848. 被引量:49
  • 4Jia B, Xin M, Cheng Y. Sparse-grid quadrature nonlinear filtering. Automatica, 2012, 48(2): 327-341.
  • 5Dunik J, Straka O, Simandl M. Stochastic integration fil- ter. IEEE Transactions on Automatic Control, 2013, 58(6): 1561-1566.
  • 6Zhang X C. A novel cubature Kalman filter for nonlinear state estimation. In: Proceedings of the 52nd IEEE Confer- ence on Decision and Control. Florence, Italy: IEEE, 2013. 7797--7802.
  • 7Wang S Y, Feng J C, Tse C K. Spherical simplex-radial cu- bature Kalman filter. IEEE Signal Processing Letters, 2014, 21(1): 43-46.
  • 8王璐,李光春,乔相伟,王兆龙,马涛.基于极大似然准则和最大期望算法的自适应UKF算法[J].自动化学报,2012,38(7):1200-1210. 被引量:38
  • 9Chang L B, Hu B Q, Li A, Qin F J. Transformed unscented Kalman Filter. IEEE Transactions on Automatic Control, 2013, 58(1): 252-257.
  • 10SchSn T B, Wills A, Ninness B. System identification of non- linear state-space models. Automatica, 2011, 47(1): 39-49.

二级参考文献39

  • 1邓自立,王建国.非线性系统的自适应推广的Kalman滤波[J].自动化学报,1987,13(5):376-379.
  • 2Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638.
  • 3Bolviken E, Acklam P J, Christophersen N, Stcrdal J M. Monte Carlo filters for non-linear state estimation. Auto- matca, 2001, 37(2): 177-183.
  • 4Julier S J, Uhlmann J K, Durrant-Whyte H F. A new ap- proach for filtering nonlinear systems. In: Proceedings of the American Control Conference. Washington, USA: IEEE, 1995. 1628-1632.
  • 5Karasalo M, Hu X M. An optimization approach to adaptive Kalman filtering. Automatica, 2011, 47(8): 1785-1793.
  • 6Han X J, Li X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sensing of Environment, 2008, 112(4): 1434-1449.
  • 7Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42(2): 261-270.
  • 8Lesmes L A, Jeon S T, Lu Z L, Dosher B A. Bayesian adap- tive estimation of threshold versus contrast external noise functions: the quick TvC method. Vision Research, 2006, 46(19): 3160-3176.
  • 9Parthasarathy S, Balaji C. Estimation of parameters in multi-mode heat transfer problems using Bayesian inference -- effect of noise and a priori. International Journal of Heat and Mass Transfer, 2008, 51(9--10): 2313-2334.
  • 10Yoon M, Ivrissimtzis I, Lee S Y. Variational Bayesian noise estimation of point sets. Computers and Graphics, 2009, 33(3): 226-234.

共引文献82

同被引文献85

  • 1Lei M, van Wyk B J, Qi Y. Online estimation of the ap- proximate posterior Cramer-Rao lower bound for discrete- time nonlinear filtering. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 37-57.
  • 2Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 3Arasaratnam I, Haykin S. Cubature Kalman smoothers. Au- tomatica, 2011, 47(10): 2245-2250.
  • 4Sarmavuori J, Sarkka S. Fourier-Hermite Kalman filter. IEEE Transactions on Automatic Control, 2012, 57(6): 1511-1515.
  • 5Sarmavuori J, Sarkka S. Fourier-Hermite Rauch-Tung- Striebel smoother. In: Proceedings of the 20th European Signal Processing Conference. Bucharest, Romania: IEEE, 2012. 2109-2113.
  • 6Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2): 510-518.
  • 7Jia B, Xin M. A new class of nonlinear Rauch-sung-Striebel cubature Kalman smoothers. ISA Transactions, 2015, 55(3): 72-80.
  • 8Jia B, Xin M, Cheng Y. Sparse-grid quadrature nonlinear filtering. Automatica, 2012, 48(2): 327-341.
  • 9Dunlk J, Straka O, Simandl M. Stochastic integration fil- ter. IEEE Transactions on Automatic Control, 2013, 218(6): 1561-1566.
  • 10Zhang X C. A novel cubature Kalman filter for nonlinear state estimation. In: Proceedings of the 2013 IEEE 52nd Annual Conference on Decision and Control. Firenze: IEEE, 2013. 7797-7802.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部