期刊文献+

基于MapReduce的最小二乘支持向量机回归模型 被引量:4

Least squares support vector machine regression model based on MapReduce
在线阅读 下载PDF
导出
摘要 针对最小二乘支持向量机处理大规模数据集耗时长且受内存限制的特点,将局部多模型方法与MapReduce编程模式相结合,提出一种并行最小二乘支持向量机回归模型。模型由两组MapReduce过程组成,首先按照输入样本集对样本数据进行聚类操作,再对聚类后得到的子类按输出样本集进行二次聚类操作,分别得到局部模型数目和各局部模型综合加权输出计算结果。实验结果表明,并行最小二乘支持向量机回归模型具有较好的加速比和可扩展性。 According to the characteristics of least squares support vector machine regression model for long processing time and memory constraints,this paper designed a parallel least squares support vector machine regression model based on MapReduce and local multi-model method. The model was composed of two MapReduce process. It clustered the sample data according to the input set,and then obtained second clustering after sub set according to the output. Two MapReduce processes were calculated the number of local model and weighted output of each model. Experimental results show that the proposed parallel least squares support vector machine regression model has better speedup and scaleup.
出处 《计算机应用研究》 CSCD 北大核心 2015年第4期1060-1064,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(51308057,51378073) 中国博士后科学基金面上资助项目(2014M550475) 国家教育部创新团队发展计划资助项目(IRT1050) 交通运输部基础研究基金资助项目(2010-319-812-080) 陕西省自然科学基础研究计划资助项目(2014JQ8354) 中央高校基本科研业务费专项资金资助项目(0009-2014G1321041,2013G3324005)
关键词 最小二乘支持向量机 MapReduce编程模式 局部多模型方法 加速比 可扩展性 least squares support vector machine MapReduce programming pattern local multi-model method speedup scaleup
  • 相关文献

参考文献17

  • 1MIRANIAN A, ABDOLLAHZADE M. Developing a local least- squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction[ J ]. IEEE Trans on Neural Net- works and Learning Systems,2013,24(2) :207-218.
  • 2WANG Li-guo, LIU Dan-feng,WANG Qun-ming, et al. Spectra/un- mixing model based on least squares support vector machine with un- mixing residue constraints [ J ]. IEEE Gooscionce and Remote Sensing Loiters,2013,10 ( 6 ) : 1592-1596.
  • 3周家中,张殿业.基于空间加权的LS-SVM城市轨道交通车站客流量预测[J].铁道学报,2014,36(1):1-7. 被引量:18
  • 4赵亚萍,张和生,周卓楠北京交通大学电气工程学院,杨军,潘成,贾利民.基于最小二乘支持向量机的交通流量预测模型[J].北京交通大学学报,2011,35(2):114-117. 被引量:20
  • 5LIU Xing-wei, FANG Xu-ming, QIN Zhen-hua, et al. A short-term forecasting algorithm for network traffic based on chaos theory and SVM [ J]. Journal of Network and Systems Management,2011, 19(4) :427-447.
  • 6ZHANG Yang, LIU Yun-cai. Data imputation using least squares support vector machines in urban arterial streets [ J ]. IEEE Signal Processing Letters,2009,16(5) :414-417.
  • 7ZHANG Yang. Hourly traffic forecasts using interacting multiple mo- del (IMM) predictor[ J]. IEEE Signal Processing Letters,2011, 18(10) :607-610.
  • 8CHRISTIAN K, ALEXEI P. Enabling real-time city sensing with ker- nel stream oracles and MapReduce [ J ]. Pervasive and Mobile Computing ,2013,9 (5) :708-721.
  • 9张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 10叶洪涛,罗飞.基于免疫优化多输出最小二乘支持向量机及其应用[J].计算机应用研究,2010,27(6):2065-2067. 被引量:3

二级参考文献123

共引文献348

同被引文献34

引证文献4

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部