期刊文献+

本体算法中相似度矩阵的学习 被引量:3

Learning of Similarity Matrix for Ontology Algorithms
在线阅读 下载PDF
导出
摘要 本体图中顶点之间的相似度计算是各类本体算法的本质所在.本体图中各个顶点对的相似度组成本体相似度矩阵,因此得到一个最优相似度矩阵是本体应用的实质.本文提出一种通过计算距离矩阵来得到本体相似度矩阵的方法,该方法着眼于降维过程的稀疏化和解的光滑性.从样本集得到相似顶点对集合S和不相似度顶点对集合D,由此得到三元组Γ.将Γ的信息融入到计算模型中,进而使得距离矩阵保持了原本体图中顶点间的距离结构特征.借鉴凸最小最大优化模型的光滑逼近法,得到距离矩阵计算模型的求解策略.最后,通过两个具体实验表明,本文所给的相似度矩阵计算方法对于特定应用领域中的本体相似度计算和不同本体间建立本体映射具有较高的效率. The essence of the ontology algorithm is the similarity calculation between vertices of ontology graph. The similarity of all pairs of vertices in ontology graph form the ontology similarity matrix, the essence of the ontology applications can be regarded as to get an optimal similarity matrix. This paper presents a technology to calculate the similarity matrix in terms of the distance matrix learning ,and the tricks focus on sparse in dimension reduction process and the smoothness of solution. By virtue of sample set,we ob- tain a set S consists of similarity pair of vertices and a set D consists of dissimilarity pair of vertices, and thus yield a triple set Г. By integrating Г into the calculation model, the distance matrix maintains the original structure of distance between vertices in ontology graph. In view of smooth approximation technology for convex Min-Max optimization model, the strategy for obtaining the solution of matrix calculation model is given. Finally, two experiments show that the new algorithms for specific applications with high efficiency.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第4期773-777,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60903131)资助 江苏省科技厅项目(BE2011173)资助
关键词 本体 相似度 本体映射 相似度矩阵 最小最大优化 稀疏 ontology similarity ontology mapping similarity matrix rain-max optimal sparse
  • 相关文献

参考文献8

二级参考文献90

  • 1黄果,周竹荣,周亭.基于语义网的信息检索研究[J].西南大学学报(自然科学版),2007,29(1):77-80. 被引量:12
  • 2黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 3LUXBURG U, BELKIN M, BOUSQUET O. Consistency of spectral clustering[J]. Ann Stat, 2008, 36(2): 555-586.
  • 4CHUNG F. Spectral graph theory[M]. Fresno: American Mathem Atical Society, 1997: 1-50.
  • 5ZHOU D X. Capacity of reproducing kernel spaces in learning theory[J]. IEEE Trans Inform Theory, 2003, 49(7): 1 743-1 752.
  • 6ZHOU D. The covering number in learning theory[J]. J Complexity, 2002, 18(3): 739-767.
  • 7CUCKER F, ZHOU D. Learning theory: an approximation theory viewpoint[M[. Cambridge: Cambridge University Press, 2007: 113-117.
  • 8Zhou D, Huang J, SchOlkopf B. Beyond pairwise classification and clustering using hypergraphs[P]. Canada.. University of Waterloo, 2005.
  • 9Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf Learning with Hypergraphs: Clustering, Classification, and Embedding[C]// Proceedings of 20th Annual Conference on Neural Information Processing SysterrLs, 2.006, Vancouver / Whistler, Canada: IEEE 2006 : 1601-1608.
  • 10Liang Sun, Shuiwang Ji, Jieping Ye. Hypergraph spectral learning for multi--label classification[C]// Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM, 2008:668--676.

共引文献50

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部