期刊文献+

一种基于压缩感知的无线传感信号重构算法 被引量:27

A Reconstruction Algorithm of Wireless Sensor Signal Based on Compressed Sensing
在线阅读 下载PDF
导出
摘要 压缩感知(Compressed Sensing,CS)是一种基于稀疏信号的获取和恢复的新理论,能以较小的采样代价获得完整的信号.这一理论符合无线传感网络在带宽和采集能力局限下需要低代价采样的需求.但由于无线传感网络的开放性,其容易受到环境噪声的影响,特别是采用压缩感知方法进行欠采样,虽然可以减小获取数据的开销,但这种"不完整"的欠采样数据对噪声更加敏感.因此抗噪声的健壮的重构算法能有效保证信号重构的精度.文中提出了一种近似梯度下降算法(Proximal Gradient Algorithm,PRG)对噪声下的压缩采样信号进行恢复.该算法通过逐步迭代逼近的方式,求得约束方程最优解,进而还原出原信号.通过与OMP、SP、BP算法比较,PRG算法在噪声环境下表现出较好的重构性能. Compressed sensing(CS)is new theory for sampling and recovering signal based sparse transformation.This theory could help us to acquire complete signal at low cost.Therefore,it also satisfies the requirement of low cost sampling since bandwidth and capability of sampling is not sufficient.However wireless sensor network is an open scene,signal is easily affected by noise in the open environment.Specially,CS theory indicates a method of sub-Nyquist sampling which is effective to reduce cost in the process of data acquirement.However the sampling is"imperfect"and the corresponding data is more sensitive to noise.Consequently,it is urgently requisite for robust and antinoise reconstruction algorithms which can ensure the accuracy of signal reconstruction.In the article,we present a proximal gradient algorithm(PRG)to reconstruct Sub-Nyquist sampling signal in the noise environment.This algorithm iteratively uses a straightforward shrinkage step to find the optimum solution of constrained formula.Furthermore it is feasibility to recovering original signal.Finally,in the experiment,PRG shows excellent performance comparing to OMP,BP,and SP while signal is corrupted by noises.
出处 《计算机学报》 EI CSCD 北大核心 2015年第3期614-624,共11页 Chinese Journal of Computers
基金 国家自然科学基金(61303227 61303038) 国家"八六三"高技术研究发展计划项目基金(2012AA12A401)资助~~
关键词 压缩感知 稀疏重构 无线传感网络 欠采样 物联网 compressed sensing sparse reconstruction wireless sensor network sub-nyquist sampling Internet of Things
  • 相关文献

参考文献4

二级参考文献146

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献316

同被引文献237

  • 1洪锋,褚红伟,金宗科,单体江,郭忠文.无线传感器网络应用系统最新进展综述[J].计算机研究与发展,2010,47(S2):81-87. 被引量:76
  • 2Zhen Yan, Zeng Lingkang, Chen Xi, Li Xiangzhen and Liu Jianming State Grid Information & Telecommunication Company Ltd.,.Architecture of Power Internet of Things[J].Electricity,2011,22(5):10-15. 被引量:5
  • 3刘辉乐,刘天琪,彭锦新.基于PMU的分布式电力系统动态状态估计新算法[J].电力系统自动化,2005,29(4):34-39. 被引量:46
  • 4孙勇,景博.基于支持度的多传感器一致可靠性融合[J].传感技术学报,2005,18(3):537-539. 被引量:38
  • 5J TROPP, A GILBERT. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit [J]. IEEE Transactions on Information Theory, 2007, 53 (12) : 4655-4666.
  • 6D L DONOHO,Y TSAIG, I DRORI, J L Starck. Sparse Solution of Underdetermined Linear Equations by Stage- wise Orthogonal Mathing Pursuit[D]. Tech. Rep. 2006-2,Department of Statistics, Stanford University, 2006.
  • 7D NEEDELL, D VERSHYNIN. Uniform Uncertainty Principle and Signal Recovery Via Regularized Orthogonal Mathing Pursuit [J]. Foundations of Computational Mal Lhematies, 2009, 9(3) :317-334.
  • 8DONOHO D L. Compressed sensing[ J]. IEEE Transactions on In- formation Theory, 2006, 52(4) : 1289 - 1306.
  • 9CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2007, 52(12) : 5406 -5425.
  • 10BARON D, DUARTE M F, WAKIN M B, et al. Distributed com- pressive sensing [ C]// Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscat- away, NJ: IEEE, 2009:2886 -2889.

引证文献27

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部