期刊文献+

多通道Gabor特征的融合聚类图像纹理分割

Clustering Ensemble By Multi-channel Gabor Features for Texture Segmentation
在线阅读 下载PDF
导出
摘要 针对图像纹理分割,提出了采用图像Gabor多通道特征进行融合聚类方法.首先采用Gabor小波对图像进行卷积滤波,得到每个像素点的多尺度多方向的Gabor特征,然后对其进行标准化以及Gauss平滑,减少噪声影响.对每个优化后的Gabor特征作为训练值,采用融合聚类算法每次随机选择部分特征进行聚类,通过运行多次基聚类,然后对聚类结果采用投票的方式得到最终的图像纹理分割,通过人工合成纹理与自然纹理图像实验证明该方法对纹理的分类具有较高的正确率. For the purpose of image texture classification, this paper proposes a clustering ensemble method by the use of multi-channel Gabor features. Firstly, it filtered the image by the multi-frequently and multi-direction Gabor wavelets, and then it standardized the image and Gaussian smoothed it to reduce the effects of noise;sec-ondly, it used the multi-channel filters as training data, randomly selected some of the feature for k-means clus-tering as the base and run the procedure for many times;lastly, it run clustering ensemble algorithms that voting for the base clustering results to get the final image texture classification. Experimenting with synthetic texture and natural texture images, it proves that the method of texture the classification has a high accuracy rate.
作者 邝神芬
出处 《韶关学院学报》 2015年第2期6-10,共5页 Journal of Shaoguan University
基金 国家自然科学基金(F030402)
关键词 GABOR小波 多通道GABOR滤波 聚类融合 纹理分类 Gabor wavelet multi-channel Gabor filter clustering ensemble texture classification
  • 相关文献

参考文献13

  • 1Grigorescu S E, Petkov N, Krnizinga P. Comparison of texture features based on Gabor filters [J]. Image Processing, IEEE Transactions on, 2002, 11(10): 1160-1167.
  • 2Hammouda K, Jernigan E. Texture segmentation using Gabor filters[R]. Canada: McGill University, 2000.
  • 3Waske B, Van Der Linden S, Benediktsson J A, et al. Sensitivity of support vector machines to random feature selection in clas- sification of hyperspectral data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010, 48(7): 2880-2889.
  • 4John G Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J].Optical Society of America,1985,2(7): 1160-1169.
  • 5Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters[J]. Pattern Recognition, 1991,24(12), 1167-1186.
  • 6Zhang Jian-guo, Tan Tie-niu, Ma Li. Invariant texture segmentation via circular Gabor filter[C ]//Pattern Recognition, Proceed- ings of the 16th IAPR International Conference on. IEEE, 2002:901-904.
  • 7IKhan J F, Adhami R R, Bhuiyan S. A customized Gabor filter for unsupervised color image segmentation [J ]. Image and Vision Computing, 2009,27(4): 489-501.
  • 8Rahman M d, Hafizur M,Pickering R, et al. Scale and rotation invariant Gabor features for texture retrieval [C]//Digital Image Computing Techniques and Applications (DICTA), 2011 International Conference on. Noosa, QLD:IEEE, 2011.
  • 9Liu Y, Muftah M, Das T, et al. Classification of MR tumor images based on Gabor wavelet analysis [J]. Journal of Medical and Biological Engineering, 2012, 32(1): 22-28.
  • 10Singh S, Aggarwal A, Dhir R. Use of Gabor Filters for Recognition of Handwritten Gurmukhi Character[J ].International Journal of Advanced Research in Computer Science and Software Engineering, 2012,2(5):378-386.

二级参考文献30

  • 1Moravec H P. Robot Rover Visual Navigation[M]. UMI Research Press, 1981.
  • 2Harris C, Stephens M. A combined comer and edge detector [A]. Proceedings of the 4th Alvey Vision Conference [ C]. Manchester, 1988.147 - 151.
  • 3Smith S M, Brady J M. SUSAN-a new approach to low level image processing[ J]. International Journal of Computer Vision, 1997,23(1) :45 - 78.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[ J ]. Intematiollal Journal of Computer Vision, 2004, 60 (2) :91 - 110.
  • 5Mikolajczyk K, Schmid C. Indexing based on scale invariant interest points[ A]. Proceedings of IEEE. International Conference on Computer Vision[ C]. IEEE Press,2001.525 - 531.
  • 6Fauqueur J, Kingsbury N, Anderson R. Mulfiscale keypoint detection using the Dual-tree complex wavelet[ A]. Proceedings of IEEE International Conference on Image Processing[C]. IEEE Press, 2006. 1625 - 1628.
  • 7Witkin A P. Scale-space filtering[ A ]. Proceedings of the 8th International Joint Conference on Artificial Intelligence [ C ]. Karlsruhe, Germany, 1983.1019 - 1023.
  • 8Lindeberg T. Feature detection with automatic scale selection [ J]. International Journal of Computer Vision, 1998,30(2) : 79 - 116.
  • 9Koenderink J J. The structure of images[ J] .Biological Cybernetics, 1984,50(5) : 363 - 370.
  • 10Joni Kamarainen. Local Object Description Using Gabor Features[ OL]. http://www, lut. fi/- jkamarai.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部