期刊文献+

基于图像的巡检船主动避障算法

Research on patrol boat active obstacle avoidance image algorithm
在线阅读 下载PDF
导出
摘要 对巡检船主动避障算法进行研究,提出一种方向抑制的GOA(gradient of averages,平均梯度)改进算法,解决了传统直线段提取算法计算量大的问题.采用抑制横向纹理的GOA算法强化障碍物特有的竖(斜)向纹理,利用特殊形态学模板进行去噪,并结合时域滤波处理连通分析结果,完成目标特征检测.通过与LSD(Line Segment detection)算法进行实验对比,结果表明:改进算法边缘特征提取完整,计算复杂度低.针对TI公司的Davinci芯片进行算法核心函数优化,满足实时性要求. By studying the algorithm of patrol boat automatic obstacle avoidance,an improved GOA(gradient of averages)algorithm based on the direction suppression was proposed,which had lower computational complexity than traditional line extraction algorithm.Using the GOA algorithm to suppress transverse texture and enhance the unique vertical(oblique)texture of obstacles,and utilize the special morphological template for noise rejection,the detection of objective characteristics has been accomplished together with the result of the time-domain filtering connectivity analysis.Compared with the LSD algorithm experimentally,the GOA algorithm can significantly improve the integrality of edge extraction,and reduce the computational complexity.On Davinci chip of TI the core function of the algorithm was optimized,and meet real-time requirements.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2014年第4期434-438,共5页 Journal of Hebei University(Natural Science Edition)
基金 河北省教育厅科学技术研究计划项目(Z2011252 Z2012126)
关键词 避障 图像 直线边缘特征 GOA LSD obstacle avoidance image straight edge feature GOA LSD
  • 相关文献

参考文献8

二级参考文献19

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:323
  • 2王年,范益政,鲍文霞,韦穗,梁栋.基于图割的图像匹配算法[J].电子学报,2006,34(2):232-236. 被引量:27
  • 3胡溢,李平,韩波.微型UAV水面检测系统研究[J].机电工程,2006,23(12):33-36. 被引量:1
  • 4宋新,罗军,王鲁平,沈振康.基于边缘连接的线段检测方法[J].系统工程与电子技术,2007,29(4):669-672. 被引量:6
  • 5CANNY J. A Computational Approach to Edge Detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • 6BRADSKIG,KAEHLERA.学习OpenCV[M].于仕琪,刘瑞祯,译.北京:清华大学出版社,2010:246-247.
  • 7GONZALEZR,WOODSR.数字图像处理[M].阮秋琦,阮宇智,等译.第2版.北京:电子工业出版社,2010:496-507.
  • 8FABER V. Clustering and Continuous k-means Algorithm[J]. Los Alamos Science, 1994(22): 138-144.
  • 9MIGNOTTE M. Segmentation by Fusion of Histogram based K-Means Clusters in Different Color Spaces[J]. IEEETransactions on Image Processing, 2008, 17: 780-787.
  • 10MATAS J, GALAMBOS C, KITTLER J. Robust Detection of Lines Using the Progressive Probabilistic Hough Transform[J]. Computer Vision and Image Understanding, 2000, 78(1): 119-137.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部