期刊文献+

基于局部均值分解的边际谱在滚动轴承故障诊断中的应用 被引量:18

Application of marginal spectrum based on local mean decomposition in rolling bearing fault diagnosis
在线阅读 下载PDF
导出
摘要 局部均值分解(Local Mean Decomposition,LMD)将复杂的多分量信号自适应地分解为有限个乘积函数(PF)的和,在计算了各个分量的瞬时幅值(IA)和瞬时频率(IF)后,可以计算出基于LMD的边际谱。针对直接法求取瞬时频率存在端点误差大问题,提出一种改进的直接求取瞬时频率的方法;提出了基于LMD的边际谱的滚动轴承故障诊断方法,将该方法应用于实际滚动轴承故障诊断中,结果表明该方法能有效地提取出滚动轴承的故障特征频率,从而确定故障部位。 Local mean decomposition(LMD)can be used to decompose a complex multi-component signal into a linear combination of several product functions (PFs ).After obtaining the instantaneous amplitudes and instantaneous frequencies of all PF components,the marginal spectrum based on LMD can be calculated.Aiming at the big error problem of the instantaneous frequency at end-points extracted with the direct method,an improved direct method was put forward.The marginal spectrum method based on LMD for rolling bearing fault diagnosis was proposed,and it was applied in actual rolling bearing fault diagnosis.The analysis results showed that the fault characteristic frequency can be extracted effectively,and the fault position can be determined.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第3期5-8,13,共5页 Journal of Vibration and Shock
基金 军队科研计划项目
关键词 局部均值分解 边际谱 滚动轴承 故障诊断 瞬时频率 local mean decomposition marginal spectrum rolling bearing fault diagnosis instantaneous frequency
  • 相关文献

参考文献10

二级参考文献57

共引文献209

同被引文献171

引证文献18

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部