期刊文献+

决策树ID3算法的分析与优化 被引量:8

Analysis and Optimization of ID3 Decision Tree Algorithm
在线阅读 下载PDF
导出
摘要 对ID3算法的基本概念和原理以及其分支策略和构造过程进行了详细阐述,针对ID3算法倾向于选择取值较多的属性的缺点,引进属性偏向阈和信息增益率对其做了改进,并利用凸函数的性质简化了ID3算法中信息增益的计算.通过实验对改进前后的算法进行了比较,实验表明,改进后的算法是有效的. The basic concepts and principles of ID3 algorithm and its branching strategy and construction process are elaborated. For the shortcoming that ID3 algorithm tends to choose attribute with many values, at- tribution deflection threshold and information gain ratio were introduced to improve ID3 algorithm, and the properties of convex function was used to simplify the information gain calculation in the ID3 algorithm. By comparing experiments, the results show that the improved algorithm is effective.
作者 李瑞 许旭睿
出处 《大连交通大学学报》 CAS 2015年第2期91-95,共5页 Journal of Dalian Jiaotong University
基金 辽宁省教育厅科学研究计划资助项目(L2012163)
关键词 决策树 ID3算法 凸函数 信息增益率 属性偏向阈 decision tree ID3 algorithm convex function information gain ratio attribution deflection threshold
  • 相关文献

参考文献12

  • 1WITrENIH,FRANKE.数据挖掘一实用机器学习技术[M].北京:机械工业出版社,2006.
  • 2QUINLAN J R. C4. 5: programs for machine learning [M]. [s. 1. ]: Morgan kaufmann, 1993.
  • 3QUINLAN J R. Simplifying decision trees [ J ]. Interna-tional journal of man-machine studies, 1987, 27 (3 : 221-234.
  • 4I QUINLAN J R. Generating Production Rules from Deci- sion Trees[ C]//IJCAI. 1987, 87 : 304-307.
  • 5COVER T M, THOMAS J A. Elements of information theory[M]. [s. 1. ] : John Wiley & Sons, 2012.
  • 6韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 7曲开社,成文丽,王俊红.ID3算法的一种改进算法[J].计算机工程与应用,2003,39(25):104-107. 被引量:79
  • 8王苗,柴瑞敏.一种改进的决策树分类属性选择方法[J].计算机工程与应用,2010,46(8):127-129. 被引量:22
  • 9同济大学应用数学系.高等数学[M].6版.北京:高等教育出版社,2007:113-223.
  • 10QUINLAN J R. Induction of decision trees [ J ]. Ma- chine learning, 1986, 1 (1) : 81-106.

二级参考文献22

  • 1Quinlan J R.Induction of decision trees[J].Machine Learning, 1986, 1:81-106.
  • 2R·格罗恩.数据挖掘一构筑企业竞争优势[M].西安:西安交通大学出版社,2001..
  • 3Quinlan J R.Induction of decision tree[J].Machine Learning, 1986; (1): 81-106.
  • 4Quinlan J R.C4.5:Programs for Machine Learnint[M].Morgan Kaufmann,1992.
  • 5Quinlan J R.Discovering rules from large collections of examples:Acase study[C].In:Michie D,eds.Expert Systems in the Micro Electronic Age,Edinburgh University Press,1979.
  • 6Quinlan J R.Learning efficient classification procedures and their application to chess endgames[C].In:R S Michalski,J G Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach, Tioga, 1983.
  • 7Quinlan J R.The effect of noise on concept learninl[C].In:R S Michalske,JG Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach,Morgan Kaufmann,1986.
  • 8Quinlan J R.Simplifying Decision Trees[J].Intemet Journal of Man-Machine Studies, 1987;27:221-234.
  • 9Quinlan J R.Generating production rules from decision trees[C].In: Proceedings of IJCAI-87,Milan,Italy,1987.
  • 10Drucker H,Cortes C.Boosting decision tree[M].Neural Information Processing,MorganKaufmann,MIT Press, 1996.

共引文献165

同被引文献73

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部