期刊文献+

A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model

A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model
在线阅读 下载PDF
导出
摘要 In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.
作者 Yiqing YU
出处 《International Journal of Technology Management》 2015年第4期126-128,共3页 国际技术管理
关键词 the trajectory of floats RBF neural network model Global optimization model 0-1 knapsack problem improved geneticalgorithm 神经网络模型 搜索区域 优化模型 RBF 平面 0-1背包问题 改进的遗传算法 搜索时间
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部