期刊文献+

基于基因表达式编程算法的参考作物腾发量模拟计算 被引量:22

Simulation of Reference Evapotranspiration Based on Gene-expression Programming Method
在线阅读 下载PDF
导出
摘要 选取都安气象站5年(2008—2012年)的逐日气象数据,包括日最高气温、最低气温、平均风速、日照时数以及相对湿度5个气象要素的不同组合作为输入,并以FAO-56 Penman-Monteith法(FAO P-M)的计算结果作为标准值,采用基因表达式编程算法(GEP)及径向基函数网络算法(RBFNN)对参考作物腾发量ETo进行模拟计算,并将模拟结果与Hargreaves模型的计算结果进行比较,用决定系数R2和均方根误差RMSE作为评价指标。结果表明,GEP模型能够捕捉到ETo的变化,具有较强的适用性,与FAO P-M公式的计算值有很高的一致性。引入关键气象因子(气温和相对湿度)后,模型的决定系数R2达到0.914,均方根误差RMSE为0.240 mm/d。在相同输入情况下GEP模型计算精度高于RBFNN模型和Hargreaves模型,并建立了可以替代Hargreaves模型的GEP模型及缺少相对湿度RH时的GEP模型。结果表明,在缺乏相关气象因子时,可以利用GEP模型模拟ETo。 Reference evapotranspiration (ETo) is a major component of the hydrological cycle. Accurate assessment of evapotranspiration is needed for water resources management and irrigation scheduling. The performance ability of gene-expression programming (GEP) and radical basis function neural network (RBFNN) was investigated for modeling ETo in weather station of Du'an for a 5-year period (2008-- 2012). The data set was comprised of daily maximum temperature, minimum temperature, sunshine duration and relative humidity, Which was employed for modeling ETo by using FAO - 56 Penman - Monteith equation as reference. GEP results were compared with RBFNN and Hargreaves models, and their performances were evaluated through determination coefficient (R2) and root mean square error RMsE. Based on the comparisons, GEP was found to perform better than RBFNN and Hargreaves models. The GEP model which can replace Hargreaves model and the GEP model without relative humidity were established. Statistically, GEP is an effectual modeling tool for successfully computing reference evapotranspiration.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第4期106-112,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(41171187 31100294) 中国科学院西部行动计划资助项目(KZCX2-XB3-10)
关键词 参考作物腾发量 基因表达式编程 气象因子组合 Penman-Monteith模型 Hargreaves模型 Reference evapotranspiration Gene-expression programming Meteorological factorscombination Penman-Monteith model Hargreaves model
  • 相关文献

参考文献17

  • 1Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration--guidelines for computing crop water requirements--FAO irrigation and drainage paper 56[ R]. Rome: FAO, 1998.
  • 2王昊,许士国,孙砳石.扎龙湿地参照作物蒸散发估算的经验模型[J].水科学进展,2007,18(2):246-251. 被引量:14
  • 3Landeras G, Ortiz-Barredo A, Lopez J J. Comparison of artificial neural network models and empirical equations for daily reference evapotranspiration estimation in the Basque Country ( Northern Spain ) [ J ]. Management, 2005, 95(5): 553-565.
  • 4Kumar M, Raghuwanshi N, Singh R, et al. Estimating evapotranspiration using artificial neural network[ J]. and Drainage Engineering, 2002, 128 (4) : 224 - 233. and semi-empirical Agricultural Water Journal of Irrigation.
  • 5霍再林,史海滨,陈亚新,魏占民,屈忠义,孔东,刘晓志.参考作物潜在蒸散量的人工神经网络模型研究[J].农业工程学报,2004,20(1):40-43. 被引量:24
  • 6徐俊增,彭世彰,张瑞美,李道西.基于气象预报的参考作物蒸发蒸腾量的神经网络预测模型[J].水利学报,2006,37(3):376-379. 被引量:60
  • 7Kisi O. Generalized regression neural networks for evapotranspiration modelling[ J]. Hydrological Sciences Journal, 2006, 51 (6) : 1092 - 1105.
  • 8Kisi O, 0zturk 0. Adaptive neurofuzzy computing technique for evapotranspiration estimation [ J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4) : 368 - 379.
  • 9Moghaddamnia A, Ghafari Gousheh M, Piri J, et al. Evaporation estimation using artificial neural networks and adaptive neuro- fuzzy inference system techniques [ J ]. Advances in Water Resources, 2009, 32 ( 1 ) : 88 - 97.
  • 10顾世祥,王士武,袁宏源.参考作物腾发量预测的径向基函数法[J].水科学进展,1999,10(2):123-128. 被引量:36

二级参考文献43

  • 1张静怡,陆桂华,徐小明.自组织特征映射神经网络方法在水文分区中的应用[J].水利学报,2005,36(2):163-166. 被引量:14
  • 2茆智,李远华,李会昌.逐日作物需水量预测数学模型研究[J].武汉水利电力大学学报,1995,28(3):253-259. 被引量:60
  • 3龚元石,北京农业大学学报,1995年,1期
  • 4康绍忠,土壤-植物-大气连续体水分传输理论及其应用,1994年
  • 5陈玉民,中国主要农作物需水量等值线图研究,1993年
  • 6顾世祥,武汉水利电力大学(宜昌)学报,1998年,1期,37页
  • 7任若恩,多元统计数据分析.理论、方法、实例,1997年,149页
  • 8胡铁松,神经网络预测与优化,1997年,96页
  • 9茆智,武汉水利电力大学(宜昌)学报,1995年,6期,253页
  • 10徐秉铮,神经网络理论与应用,1994年,304页

共引文献374

同被引文献284

引证文献22

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部