期刊文献+

不等式约束优化基于新型积极识别集的SQCQP算法 被引量:2

An SQCQP Algorithm with New Active Identification Set for Inequality Constrained Optimization
原文传递
导出
摘要 本文提出一个新的求解非线性不等式约束优化问题的罚函数型序列二次约束二次规划(SQCQP)算法.算法每次迭代只需求解一个凸二次约束二次规划(QCQP)子问题,且通过引入新型积极识别集技术,QCQP子问题的规模显著减小,从而降低计算成本.在不需要函数凸性等较弱假设下,算法具有全局收敛性.初步的数值试验表明算法是稳定有效的. In this paper, a new penalty-function type sequential quadratically constrained quadratic programming (SQCQP) algorithm for nonlinear inequality constrained optimiza- tion problems is presented. The algorithm solves at each iteration only a quadratically constrained quadratic programming (QCQP) subproblem, and by employing a new active identification set technique, the scale of the QCQP subproblem is greatly decreased, thus the computational cost is also reduced. Without assuming the convexity of the objection function or the constraints, the algorithm possesses global convergence under weaker con- ditions, and some preliminary numerical results show that the proposed algorithm is stable and promising.
出处 《应用数学学报》 CSCD 北大核心 2015年第2期222-234,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11271086) 广西自然科学基金(2013GXNSFAA019013 2014GXNSFFA118001) 玉林师范学院一般项目(2014YJYB04)资助项目
关键词 不等式约束优化 序列二次约束二次规划 积极识别集 算法 全局收敛性 inequality constrained optimization SQCQP active identification set algorithm global convergence
  • 相关文献

参考文献15

  • 1Schittkowski K, Yuan Y X. Sequential Quadratic Programming Methods. Wiley Encyclopedia of Operations Research and Management Science, 2011, doi:1O.1002/9780470400531.eorms0984.
  • 2Dixon L C W, Hersom S E, Maany Z A. Initial Experience Obtained Solving the Low Thrust Satellite Trajectory Optimization Problem. Technical Report T.R. 152, The Hatfield Polytechnic Numerical Optimization Center, 1984.
  • 3Solodov M V. On the Sequential Quadratically Constrained Quadratic Programming Methods. Math?ematics of Operations Research, 2004, 29(1): 64-79.
  • 4Jian J B. New Sequential Quadratically Constrained Quadratic Programming Norm-relaxed Method of Feasible Directions. Journal of Optimization Theory and Applications, 2006, 129(1): 109-130.
  • 5Tang C M, Jian J B. Sequential Quadratically Constrained Quadratic Programming Method with An Augmented Lagrangian Line Search Function. Journal of Computational and Applied Mathematics, 2008, 220(1-2): 525-547.
  • 6Fukushima M, Luo Z Q, Tseng P. A Sequential Quadratically Constrained Quadratic Programming Methods for Differentiable Convex Minimization. SIAM Journal on Optimization, 2003, 13(4): 1098- 1119.
  • 7Mosek ApS. The MOSEK Optimization Toolbox for MATLAB Manual, Version 6.0 . ?? http://www.mosek.com/.. .
  • 8Jian J B, Tang C M, Zheng H Y. Sequential Quadratically Constrained Quadratic Programming Norm?relaxed Algorithm of Strongly Sub-feasible Directions. European Journal of Operational Research, 2010, 200(3): 645-657.
  • 9Tang C M, Jian J B, and Li G Y. A Working Set SQCQP Algorithm with Simple Nonmonotone Penalty Parameters. Journal of Computational and Applied Mathematics, 2011, 236(6): 1382-1398.
  • 10Facchinei F, Fischer A, Kanzow C. On the Accurate Identification of Active Constraints. SIAM Journal on Optimization, 1998, 9(1): 14-32.

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部