摘要
在无限维Hilbert空间上研究了算子方程X^(-1)+(AXA~*)^(1/t)=Q(t>1)的正算子解问题.通过构造有效的迭代序列,研究了算子方程正算子解存在的充要条件,给出了该方程有正算子解时各算子范数之间的关系以及解的范围,并用迭代的方法得到了方程的正算子解.
In infinite demensional Hilbert space, the positive operator solutions to the oper- ator equation X^-1+(AXA^*)^1/t=Q(t 〉 1) is studied. The ralation of norm of the operators has been given when the operator equationthe has positive operator solutions. The necessary conditions and sufficient conditions for the existence of positive operator solutions to the oper- ator equation X^-1+(AXA^*)^1/t = Q are derived. An iterative method for finding the positive operator solutions is construsted.
出处
《数学的实践与认识》
北大核心
2015年第8期279-282,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11301318
项目依托单位:陕西师范大学)
汉中市科技局项目(2013hzzx-40)
关键词
算子方程
正算子
迭代法
范数
operator equation
positive operator
iterative method
norm