摘要
讨论了广义函数理论研究中的ω-超广义函数空间的结构和关系.通过Fourier-Lapalace变换建立了ω-超可微函数和ω-超广义函数空间与某些实解析函数空间之间的拓扑同构对应关系,从而可以利用实解析函数空间来考察ω-超可微函数和ω-超广义函数空间的结构和特性.此外,还给出了两类ω-超广义函数的某种结构表示.
The structures and relations of ω-ultradistributions in the theory of distributions were dis-cussed.Some topological isomorphism relations between ω-ultra-differentiable functions,ω-ultradistri-butions and some real-analytic function spaces were set up by Fourier-Laplace transform,so that the structures and properties of ω-ultradistributions and ω-ultra-differentiable function spaces could be studied by real-analytic function spaces.Moreover,a structure of two ω-ultradistributions was ob-tained.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2015年第2期126-130,共5页
Journal of North University of China(Natural Science Edition)
基金
山西省回国留学人员科研资助项目(2012-011)
关键词
权函数
ω-超可微函数
ω-超广义函数
实解析函数空间
weight functions
ω-ultra-differentiable functions
ω-ultradistributions
real-analytic function spaces