摘要
应用最大模原理,给出一类解变系数双边空间分数阶偏微分方程的隐式有限差分格式,并证明这类格式当分数阶导数α∈[17-1/2,2]时无条件稳定且由此得出其收敛阶为O(Δt+h2)。最后给出数值算例验证。
Based on the maximum modulus principle, a kind of implicit finite difference schemes for two-sided space fractional partial differential equations with variable coefficient is introduced. This kind of schemes unconditionally stable and convergence rate O(△t+ h^2) with fractional derivative a belonging to [√17-1/2,2] are proved. Numerical examples are given to show the efficiency and the convergence rate of presented schemes.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期83-87,共5页
Journal of Chongqing Normal University:Natural Science
基金
宁夏高等学校科学技术研究项目(No.NGY2013018)
关键词
变系数双边空间分数阶偏微分方程
有限差分格式
无条件稳定
收敛阶
two-sided space fractional partial differential equations
finite difference scheme
unconditionally stable
convergencerate