期刊文献+

基于最大模原理的双边空间分数阶方程的二阶隐式有限差分法

A Kind of Second-order Implicit Finite Difference Methods for Two-sided Space Fractional Partial Differential Equations Based on the Maximum Modulus Principle
原文传递
导出
摘要 应用最大模原理,给出一类解变系数双边空间分数阶偏微分方程的隐式有限差分格式,并证明这类格式当分数阶导数α∈[17-1/2,2]时无条件稳定且由此得出其收敛阶为O(Δt+h2)。最后给出数值算例验证。 Based on the maximum modulus principle, a kind of implicit finite difference schemes for two-sided space fractional partial differential equations with variable coefficient is introduced. This kind of schemes unconditionally stable and convergence rate O(△t+ h^2) with fractional derivative a belonging to [√17-1/2,2] are proved. Numerical examples are given to show the efficiency and the convergence rate of presented schemes.
作者 朱琳 芮洪兴
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期83-87,共5页 Journal of Chongqing Normal University:Natural Science
基金 宁夏高等学校科学技术研究项目(No.NGY2013018)
关键词 变系数双边空间分数阶偏微分方程 有限差分格式 无条件稳定 收敛阶 two-sided space fractional partial differential equations finite difference scheme unconditionally stable convergencerate
  • 相关文献

参考文献10

  • 1Bouchaud J P,Reorges A. Anomalous diffusion in disorder- ed media-statistical mechanisms models and physical appli- cations[J]. Phys Rep, 1990,195 : 127-293.
  • 2Hilfer R. Applications of fractional calculus in physics[M]. Singapore: World Scientific, 2000.
  • 3Sokolov I M, Klafter J, Blumen A. Fractional kinetics[J]. Physics Today, 2002,55 : 28-53.
  • 4Lynch V E,Carreras B A,Del-Castillo-Negrete D,et al. Nu- merical methods for the solution of partial differential equa- tions of fractional order[J]. J Comput Phys, 2003,192 : 406- 421.
  • 5Meerschaert M M,Tadjeran C. Finite difference approxima- tions for fractional advection-dispersion flow equations[J]. J Comput Appl Math, 2004,172 : 65-77.
  • 6Yuste S B, Acedo L. An explicit finite difference method and a new yon Neumamnn-type stability analysis for frac- tional diffusion equations[J]. SIAM J Numer Anal, 2005, 42:1862-1874.
  • 7Sun Z Z,Wu X N. A fully discrete difference scheme for a diffusion-wave system[J]. Applied Numerical Mathemat- ics, 2006,56 : 193-209.
  • 8Liu F,Zhuang P, Anh V, et al. Stability and convergence of the difference methods for the space-time fractional advec- tion-diffusion equation[J]. Applied Mathematics and Com- putation, 2007,191 : 12-20.
  • 9Li X J,Xu C J. A space-time spectral method for the time fractional diffusion equation [J]. SIAM J Numer Anal, 2009,47 : 2108-2131.
  • 10郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部