期刊文献+

基于一类支持向量机的财务数据异常模式识别 被引量:9

Financial Data Abnormal Pattern Recognition Based on One-Class Support Vector Machines
在线阅读 下载PDF
导出
摘要 财务监督在反腐倡廉建设中发挥着重要作用,但是财务数据具有非平稳、非线性、信噪比低等特点,且没有专门用于鉴别财务数据异常的训练集。将金融交易数据以周为时间跨度生成时间序列,选择交易总金额、交易离散系数、转账次数作为财务账户数据的特征,利用基于统计学习理论的一类支持向量机(one-class SVMs)实现金融交易数据的无监督分类,从而识别出可疑异常财务数据。采用径向基函数作为一类支持向量机的核函数,运用交叉验证法选择核参数γ和惩罚参数C。仿真数据异常检测实验证明了该方法的有效性,并检测出了实际财务账户数据中的可疑值。 Financial supervision plays an important role in the construction of anti-corruption. But the financial data has the feature of being non-stationary, nonlinear, and low signal-to-noise ratio. And no specialized training set is used to identify abnormal financial data. This paper transforms the data of financial transactions to time series by a time span of a week. The total amount of transac- tion, the dispersion coefficient and the times of transaction are chosen as the features of the financial account data. In order to find abnormal values, the financial transaction data is classified with unsu- pervised method using one-class support vector machines (one-class SVMs) which is based on the statistic learning theory. We select radial basis function as the kernel function of one-class SVMs and the cross-validation method is adopted to choose the kernel parameters ~/ and C. Experiments on simulated data show promising results and find the abnormal values in real financial data.
出处 《信息工程大学学报》 2015年第2期251-256,共6页 Journal of Information Engineering University
关键词 财务数据 账户 异常检测 一类支持向量机 financial data account abnormal detection one-class SVMs
  • 相关文献

参考文献15

  • 1李山泉.加强财务综合监管构建党风廉政建设长效机制[J].现代商业,2010(20):78-79. 被引量:1
  • 2解晓勇.加强行政单位财务监督工作的思考[J].消费导刊,2008,0(24):102-102. 被引量:4
  • 3Kara Y, Boyacioglu M A, Baykan O K. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbnl Stock Exchange[ J ]. Expert Systems with Applications, 2011, 38:5311- 5319.
  • 4E K, J L. Finding unusual medical time-series subsequences:algorithms and appllcations[ Z]. 2006.
  • 5B L, Suzuki Y, K K. New Time Series Data Representation ESAX for Financial Applications[ Z]. 2006.
  • 6王翔宇,张引琼.基于MATLAB的时间序列异常检测方法探讨[J].电脑知识与技术,2012,8(2):866-872. 被引量:5
  • 7周大镯,刘月芬,马文秀.时间序列异常检测[J].计算机工程与应用,2008,44(35):145-147. 被引量:21
  • 8Scholkopf B, Williamson R C, Smola. Support vector method for novelty detection[ J]. Advances in Neural Information Pro- cessing Systems, 2000, 12 (4) : 558-582.
  • 9Ben-Hur A, Horn D, Siegelmann H T. Support vector clustering[J]. The Journal of Machine Learning Research, 2002, 2 (5) : 125-137.
  • 10Huanga Z, Chena H, Hsua C, et al. Credit rating analysis with support vector machines and neural networks : a market com- parative study[J]. Decision Support System, 2004, 37: 543-558.

二级参考文献24

共引文献55

同被引文献95

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部