期刊文献+

基于三阶中心矩区域分类的视频运动目标检测 被引量:4

Video Moving Object Detection Based on Region Classification Using Three-Order Central Moment
在线阅读 下载PDF
导出
摘要 针对室外视频监视环境复杂,现有的运动目标检测方法难以在克服背景干扰的同时准确地检测到慢速目标和运动着的小目标,且存在准确性低的问题,提出一种基于三阶中心矩场景区域分类的运动目标检测方法.由于前景区域、扰动区域和背景区域内真实运动、无意义运动、背景噪声像素值变化规律不同,采用三阶中心矩建立区域内像素值变化和区域类型的对应关系,设计了基于三阶中心矩的分类器以完成自适应场景区域分类,最终在区域分类的结果上检测运动目标.实验结果表明,该方法针对室外监视视频区域分类结果良好,能够克服树枝叶晃动、水面波动等背景干扰,可以准确地检测到慢速目标和运动着的小目标. For the complex outdoor video surveillance, the existing moving object detection methods are dif-ficult to overcome the background interference and accurately detect slow moving objects, as well as small objects simultaneously. These methods have the problem of low accuracy. This paper proposes a moving object detection method based on region classification using three-order central moment. For the different change characteristics of the different pixels in foreground region, cluster region, and background region, which imply the true motion, meaningless motion and background noise, three-order central moment is em-ployed to build the corresponding relationship between the changes of pixel values and the classification of different regions. Therefore, the classifier based on three-order central moments is designed to adaptively classify the scene regions. Accordingly, the moving objects can be detected based on the region classification. The experimental results demonstrate that the proposed method can classify the different regions for outdoor video surveillance effectively. It also can overcome the background interference, e.g., branches swings and water fluctuates, and can detect slow objects and moving small objects accurately.
作者 郑锦 李波
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期832-840,846,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2014AA015104) 国家自然科学基金(61370124) 国家杰出青年科学基金(61125206) 国家留学基金(201303070205)
关键词 运动目标检测 区域分类 三阶中心矩 分类器 moving object detection region classification three-order central moment classifier
  • 相关文献

参考文献20

  • 1Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 1999,2:246-252.
  • 2Elgamrnal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163.
  • 3Lin H H, Chuang J H, Liu T L. Regularized background adap- tation: a novel learning rate control scheme for Gaussian mix- ture modeling[J]. IEEE Transactions on Image Processing, 2011, 20(3): 822-836.
  • 4Toyama K, Krumm J, Brumitt B, et al. Wallflower: principles and practice of background maintenance[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 1999,1 : 255-261.
  • 5Ryu H Y, Lee K, Kwon B D. Change detection for urban analy- sis with high-resolution imagery: homomorphic filtering and morphological operation approach[CJ//Proeeedings of IEEE International Conference on Geoseience and Remote Sensing Symposium. Los Alamitos: IEEE Computer Society Press, 2004,4:2662-2664.
  • 6宋骊平,姬红兵,高新波.基于高阶累积量的目标机动检测新方法[J].电子学报,2004,32(1):154-156. 被引量:8
  • 7杨莉,张弘,李玉山.视频运动对象的自动分割[J].计算机辅助设计与图形学学报,2004,16(3):301-306. 被引量:37
  • 8Evans A N. Vector area morphology for motion field smoothing and interpretation[J]. IEE Proceedings Vision, Image and Sig- nal Processing, 2003, 150(4): 219-226.
  • 9苏延召,李艾华,姜柯,金广智.改进视觉背景提取模型的运动目标检测算法[J].计算机辅助设计与图形学学报,2014,26(2):232-240. 被引量:24
  • 10张敏,刘利雄,贾云得.一种基于图像区域系综分类的室外场景理解方法[J].中国图象图形学报(A辑),2004,9(12):1443-1448. 被引量:4

二级参考文献51

  • 1王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 2陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 3向世明,陈睿,邓宇,李华.在线高斯混合模型和纹理支持的运动分割[J].计算机辅助设计与图形学学报,2005,17(7):1504-1509. 被引量:11
  • 4肖梅,韩崇昭,张雷.基于时空背景差的运动目标检测算法[J].计算机辅助设计与图形学学报,2006,18(7):1044-1048. 被引量:17
  • 5[1]Hong L.Multiresolutional estimation using wavelet transform[J].IEEE Trans on Aerospace and Electronic Systems,1993,29(4):1244-1251.
  • 6[2]Hong L.Multiresolutional multiple-model target tracking[J].IEEE Trans on Aerospace and Electronic Systems,1994,30(2):518-524.
  • 7[3]Nikias C L,Petropulu A P.Higher-Order Spectra Analysis:A Nonlinear Signal Processing Framework[M].Englewood Cliffs:PTR Prentice Hall,1993.
  • 8[4]Giannakis G B,Tsatsanis M K.Signal detection and classification using matched filtering and higher-order statistics[J].IEEE Trans Acoustics,Speech,Signal Processing,1990,38(7):1284-1296.
  • 9Nguyen H T, Worring M, Dev A. Detection of moving objects in video using a robust motion similarity measure [J]. IEEE Transactions on Image Processing, 2000, 9(1) : 137- 141.
  • 10Bors Adrian G, Pitas Ioannis. Prediction and tracking of moving objects in image sequence [J]. IEEE Transactions on Image Processing, 2000, 9(8) : 1441-1445.

共引文献85

同被引文献35

  • 1Zivovic Z,Ferdinand H.Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters(SO 167-8655),2006,7(26):773-780.
  • 2Maddalena L,Petrosino A.A self-organizing approach to background subtraction for visual surveillance applications[J].IEEE Transactions on Image Processing (S1057-7149),2008,17(7):1168-1177.
  • 3Li S X,Chang H X,Zhu C F.Adaptive pyramid mean shift for global real-time visual tracking[J].Image and Vision Computing(S0262-8856),2010,28(3):424-437.
  • 4Lee S,Lee J,Hayes M H,et al.Adaptive background generation for automatic detection of initial object region in multiple color-fllter aperture camera-based surveillance system[J].IEEE Transations on Consumer Electronics(S0098-3063),2012,58(1):104-110.
  • 5Jeyakar J,Babu R V,Ramakrishnan K R.Robust object tracking with background-weighted local kernels[J].Computer Vision and Image Understanding(S1077-3142),2008,112(3):296-309.
  • 6Lin H H,Chuang J H,Liu T L.Regularized background adaptation:a novel learning rate control scheme for gaussian mixture modeling[J].IEEE Transactions on Image Processing(S1057-7149),2011,20(3):822-836.
  • 7Leichter I,Lindenbaum M,Rivlin E.Mean shift tracking with multiple references color histograms[J].Computer Vision and Image Understanding(S1077-3142),2010,114(3):400-408.
  • 8Bleyer M,Gelantz M.Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions[J].Signal Proceedings:Image Communication,Special Issue on Three-Dimensional Video and Television(S0923-5965),2007,22(2):127-149.
  • 9Chinchkhede D W,Uke N J.Image segmentation in video sequences using modified background subtraction[J].Intemational Journal of Computer Science & Information Technology(S2091-1610),2012,4(1):93-104.
  • 10D F Shen,M T Huang.A watershed-based image segmentation using JND property[C]// Proceedings of IEEE Intemational Conference on Acoustics,Speech and Signal Processing,Hong Kong,China.USA:IEEE,2003:377-380.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部