期刊文献+

基于NARX模型的岩溶地下河日流量预测 被引量:3

Daily Discharge Prediction of Karst Underground River Based on NARX Model
在线阅读 下载PDF
导出
摘要 针对传统的统计学方法难以精确刻画岩溶地下河日流量变化的非线性动态特性,引入有源自回归神经网络(NARX)技术,建立了基于NARX模型的岩溶地下河日流量预测模型,基于寨底地下河2013年1月15日~2014年6月30日的降雨量和流量数据,利用该模型对寨底地下河日流量进行了短期预测。结果表明,该模型预测效果较好,能够很好地预测岩溶地下河流量的变化趋势和极值等动态特性,另外该模型神经元个数越多,延迟阶数越大,神经网络对数据的学习能力和灵活性越强,但该模型不宜进行归一化处理。 The nonlinear dynamic characteristics of daily discharge for karst underground river is hardly depicted by using traditional statistical methods. In this paper, an artificial neural network of nonlinear autoregressive with exogenous inputs (NARX) has been developed to predict daily discharge of karst underground river. Based on the rainfall and dis- charge data from 15 January 2013 to 30 June 2014, the short-term daily discharge of Zhaidi underground river was fore- casted by using NARX model. The results show that the NARX model has good prediction effect and it can correctly sim- ulate discharge trend and extreme value; the number of neurons and time delay are in proportion to the network flexibility and learning ability, but the data normalization of the prediction model was inadvisable.
出处 《水电能源科学》 北大核心 2015年第5期19-21,25,共4页 Water Resources and Power
基金 中国地质大调查项目资助(1212011220959) 中国地质科学院岩溶地质研究所基本科研业务费项目(121237128100249)
关键词 NARX模型 岩溶地下河 日流量 预测 NARX model karst underground river daily discharge prediction
  • 相关文献

参考文献8

二级参考文献38

共引文献19

同被引文献67

  • 1黄鹍,陈森发,亓霞,周振国.基于正交试验法的神经网络优化设计[J].系统工程理论方法应用,2004,13(3):272-275. 被引量:10
  • 2任宏,周其明.神经网络在工程造价和主要工程量快速估算中的应用研究[J].土木工程学报,2005,38(8):135-138. 被引量:50
  • 3苑玉凤.正交试验结果的分析[J].统计与决策,2006,22(5):138-139. 被引量:22
  • 4于靖,刘建民,张贺.基于模糊数学的工程造价动态快速估算方法[J].广东工业大学学报,2007,24(2):107-110. 被引量:10
  • 5Tokar A S, Johnson P A. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 1999, 4 (3): 232--239.
  • 6Sudheer K P, Gosain A K, Ramasastri K S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrolo- gical Processes, 2000,16 (6) : 1325 -- 1330.
  • 7Senthil-Kumar A R, Sudheer K P, Jain S K, et al. Rainfall-runoff modeling using artificial neural network:comparison of networks types. Hydrolo- gical Processes, 2004,19 (6) : 1277 -- 1291.
  • 8Tayfur G, Singh V P. ANN and fuzzy logic models for simulating event-based rainfall- runoff. Journal of Hydrologic Engineering, 2006, 132 (12) : 1321-- 1330.
  • 9Antar M A, Elassiouti I, Alam M N. Rainfall- runoff modeling using artificial neural networks technique: a Blue Nile catchment case study. Hydrological Processes, 2006, 20 ( 5 ) .. 1201-- 1216.
  • 10Nourani V, Kisi O, Komasi M. Two hybrid] Artificial Intelligence approaches for modeling rainfall-runoff process. Journal of Hydrology, 2011,402(1) :41 --59.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部