期刊文献+

企业微博活动效果的影响因素分析 被引量:6

Analysis on the Influencing Factors of Enterprise Microblogging Activity Effect
在线阅读 下载PDF
导出
摘要 对微博活动效果的影响因素进行研究能够为企业制定微博营销策略提供有价值的参考。研究确定了微博活动效果的评估指标,活动效果主要通过转发数和评论数进行衡量,进而利用相关分析、聚类分析、决策树分类,探究活动效果的影响因素。实验结果表明,粉丝数对微博活动效果具有正向影响,较长的活动持续时间和较高的活动奖品价值会带来较好的活动效果。 In recent years, the number of microblog users has always been increasing, and microblogging as a marketing approach has already been widely used by businesses. In microblogging marketing, enterprises usually use microblogging activity, so studying the influen- cing factors of the microblogging activity effect can provide enterprises with valuable reference for developing appropriate microblogging marketing strategy. Firstly, we determine the evaluation index of microblogging activities effect, which is mainly measured by the for- warding number and the number of comments. Then, we use correlation analysis, cluster analysis and decision tree classification to explore the active factors of activity effect. The empirical results show that the number of fans has a positive impact on the microblogging activity effect, and activities with a longer duration and a higher value of the award will bring better results.
机构地区 四川大学商学院
出处 《情报杂志》 CSSCI 北大核心 2015年第5期163-168,共6页 Journal of Intelligence
基金 四川大学中央高校基本科研业务费项目"基于中文微博的负面情绪预警研究"(编号:skqy201406)
关键词 微博活动 K-MEANS聚类 决策树 效果评估 microblogging activity K-means cluster decision tree effect evaluation
  • 相关文献

参考文献17

  • 1Zhang L, Peng T Q, Zhang Y P, et al. Content or Context: Which Matters More in Information Processing on Microblogging Sites[ J]. Computers in Human Behavior,2014 (31) :242-249.
  • 2Java A, Finin T. Why We Twitter:Understanding Microblogging Usage and Communicatiies[ J]. Association for Computing Ma- chinery, 2007 : 56 -65.
  • 3Onishi H, Manchanda P. Marketing Activity, Blogging and Sales [ J ]. International Journal of Research in Marketing, 2012,29(3) :221-234.
  • 4Charleen Karunaratna,Kevin Lii. How to Make Profit Through Microblogging ? The Case of Dell on Twitter [ J ]. Journal of Marketing and Operations Management Research, 2011,3 ( 1 ) : 255 -265.
  • 5Van Laer T, De Ruyter K,In Stories We Trust: How Narrative A- pologies Provide Cover for Vulnerability after Integrity Violating Blog Posts[ J]. International Journal of Research in Marketing, 2010,27(2) :164-174.
  • 6Irem Eren Erdogmus ,Mesut Clcek. The Impact of Social Media Marketing on Brand Loyalty [ J ]. Procedia - Social and Behav- ioral Sciences ,2012 ( 58 ) : 1353-1360.
  • 7AngellaJ. Kim, EunjuKo. Do Social Media Marketing Activities Enhance Customer Equity? An Empirical Study of Luxury Fash- ion Brand [ J ]. Journal of Business Research, 2012 (65) : 1480 - 1486.
  • 8J Jansen, M Zhang, K. Sobel, et al. Microblogging as Online Word of Mouth Branding[ C]// Proceedings of the 27th Interna- tional Conference Extended Abstracts on Human Factors in Com- puting Systems[ A] ,2009.3859-3864.
  • 9王伶俐,闫强.企业微博与其营销效果的关系研究[J].北京邮电大学学报(社会科学版),2014,16(2):6-12. 被引量:5
  • 10毕凌燕,张镇鹏,左文明.基于微博传播信息流的微博效果评价模型及实证研究[J].情报杂志,2013,32(7):69-73. 被引量:22

二级参考文献87

  • 1王秋菊,师静.从“7.23动车追尾”看微博舆论波的成因[J].新闻界,2011(9):67-69. 被引量:8
  • 2陈宁.广告频率和品牌成熟度对信息加工模式的影响[J].心理学报,2001,33(5):448-452. 被引量:32
  • 3巩天雷,赵领娣.基于顾客情感和谐的情感营销驱动模式研究[J].预测,2007,26(2):25-29. 被引量:11
  • 4张文彤,董伟.SPSS统计分析高级教程[M].北京:高等教育出版社,2007,54-65.
  • 5李军,陈震,黄霁崴.微博影响力评价研究[J].焦息网络安全,2012(3):10-13,27.
  • 6Weng J S, Lim E P, Jiang J, et al. TwitterRank : Finding Topic - sensitive Influential Twitterers[ C]. In: Proceedings of the 3rdACM International Conference on Web Search and Data Mining ( WSDM 2010). New York: ACM,2010:261 -270,.
  • 7Cha M Y, Haddadi H, Benevenuto F, et al. Measuring User Influ- ence in Twitter: The Million Follower Fallacy[ C ]. In: Proceedings of International AAAI Conference on Weblogs and Social Media ( IC-WSM" l0 ) ,Washington. Menlo Park: The AAAI Press ,2010.
  • 8Ye S Z, Wu S F. Measuring Message Propagation and Social hlflu- enee on Twitter. corn [ C ]. In: Proceedings of the 2nd International Conference on Social Informatics (Soclnfo' 10 ). Heidelberg: Springer - Verlag, 2010:216 - 231.
  • 9Ymnaguchi Y, Takahashi T, Amagasa T, et al. TURank: Twitter User Rankir~g Based on User -Tweet Graph Analysis [ C ]. In: Pro- ceedings of the llth International Conference on Web Information Systems Engineering ( WISE' 10 ). Heidelberg, Berlin : Springer - Verla~.2010:240 - 253.
  • 10复旦大学2012《中国微博意见领袖研究报告》[EB/OL].ht-tp://news.ifeng.com/gundong/detail_2012_03/09/13091832_0.shtml.

共引文献154

同被引文献78

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部