期刊文献+

Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean(Glycine max(L.)Merr.) 被引量:12

Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean(Glycine max(L.)Merr.)
在线阅读 下载PDF
导出
摘要 Potassium is an important nutrient element requiring high concentration for photosynthetic metabolism.The potassium deficiency in soil could inhibit soybean(Glycine max(L.) Merr.) photosynthesis and result in yield reduction.Research on the photosynthetic variations of the different tolerant soyben varieties should provide important information for high yield tolerant soybean breeding program.Two representative soybean varieties Tiefeng 40(tolerance to K^+ deficiency) and GD8521(sensitive to K^+ deficiency) were hydroponically grown to measure the photosynthesis,chlorophyll fluorescence parameters and Rubisco activity under different potassium conditions.With the K-deficiency stress time extending,the net photosynthetic rate(Pn),transpiration rate(Tr) and stomatal conductance(Gs) of GD8521 were significantly decreased under K-deficiency condition,whereas the intercellular CO2 concentration(Ci) was significantly increased.As a contrast,the variations of Tiefeng 40 were almost little under K-deficiency condition,which indicated tolerance to K^+ deficiency variety could maintain higher efficient photosynthesis.On the 25 th d after treatment,the minimal fluorescence(F0) of GD8521 was significantly increased and the maximal fluorescence(Fm),the maximum quantum efficiency of PSII photochemistry(F√Fm),actual photochemical efficiency of PSII(φ(PSII)),photochemical quenching(qp),and electron transport rate of PSII(ETR)were significantly decreased under K^+ deficiency condition.In addition,the Rubisco content of GD8521 was significantly decreased in leaves.It is particularly noteworthy that the chlorophyll fluorescence parameters and Rubisco content of Tiefeng 40 were unaffected under K^+ deficiency condition.On the other hand,the non-photochemical quenching(qN) of Tiefeng 40 was significantly increased.The dry matter weight of Tiefeng 40 was little affected under K^+ deficiency condition.Results indicated that Tiefeng 40 could avoid or relieve the destruction of PSII caused by exceeded absorbed solar energy under K-deficiency condition and maintain natural photosynthesis and plant growth.It was an essential physiological mechanism for low-K-tolerant soybean under K-deficiency stress. Potassium is an important nutrient element requiring high concentration for photosynthetic metabolism.The potassium deficiency in soil could inhibit soybean(Glycine max(L.) Merr.) photosynthesis and result in yield reduction.Research on the photosynthetic variations of the different tolerant soyben varieties should provide important information for high yield tolerant soybean breeding program.Two representative soybean varieties Tiefeng 40(tolerance to K^+ deficiency) and GD8521(sensitive to K^+ deficiency) were hydroponically grown to measure the photosynthesis,chlorophyll fluorescence parameters and Rubisco activity under different potassium conditions.With the K-deficiency stress time extending,the net photosynthetic rate(Pn),transpiration rate(Tr) and stomatal conductance(Gs) of GD8521 were significantly decreased under K-deficiency condition,whereas the intercellular CO2 concentration(Ci) was significantly increased.As a contrast,the variations of Tiefeng 40 were almost little under K-deficiency condition,which indicated tolerance to K^+ deficiency variety could maintain higher efficient photosynthesis.On the 25 th d after treatment,the minimal fluorescence(F0) of GD8521 was significantly increased and the maximal fluorescence(Fm),the maximum quantum efficiency of PSII photochemistry(F√Fm),actual photochemical efficiency of PSII(φ(PSII)),photochemical quenching(qp),and electron transport rate of PSII(ETR)were significantly decreased under K^+ deficiency condition.In addition,the Rubisco content of GD8521 was significantly decreased in leaves.It is particularly noteworthy that the chlorophyll fluorescence parameters and Rubisco content of Tiefeng 40 were unaffected under K^+ deficiency condition.On the other hand,the non-photochemical quenching(qN) of Tiefeng 40 was significantly increased.The dry matter weight of Tiefeng 40 was little affected under K^+ deficiency condition.Results indicated that Tiefeng 40 could avoid or relieve the destruction of PSII caused by exceeded absorbed solar energy under K-deficiency condition and maintain natural photosynthesis and plant growth.It was an essential physiological mechanism for low-K-tolerant soybean under K-deficiency stress.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第5期856-863,共8页 农业科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(31271644) the Program for Liaoning Excellent Talents in University(LNET),China the Tianzhu Mountian Scholars Support Plan of Shenyang Agricultural University,China
关键词 photosynthesis photosynthetic soybean Rubisco potassium Glycine stomatal PSII transpiration chlorophyll photosynthesis photosynthetic soybean Rubisco potassium Glycine stomatal PSII transpiration chlorophyll
  • 相关文献

参考文献4

二级参考文献44

共引文献53

同被引文献138

引证文献12

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部