期刊文献+

基于发声模型的腭裂语音高鼻音自动检测算法 被引量:2

Automatic detection algorithm of hypernasality in cleft palate speech based on acoustic model
在线阅读 下载PDF
导出
摘要 通过对腭裂语音发声模型进行研究,提出基于激励、声道、辐射模型特征参数的腭裂语音高鼻音等级自动识别算法。通过对基于激励模型的基音频率、基于声道模型的共振峰参数、基于综合发声模型的短时能量和Mel倒频谱系数等表征高鼻音特性的参数进行分析和改进,以K-最近邻算法为模式识别分类器,得出应用4种特征参数的高鼻音等级自动识别结果。实验结果表明,Mel倒频谱系数与腭裂语音临床生理特征相关性最大,对不同等级高鼻音识别率最高。 Though the studies on the acoustic model of cleft palate speech signals ,the automatic identification algorithm of hy‐pernasal level in cleft palate speech based on characteristic parameters of incentive model ,vocal tract model and radiation model was put forward .After a series of analysis and improvement on characteristic parameters of hypernasality including pitch based on incentive model ,formants based on vocal tract and energy and Mel cepstrum coefficient based on comprehensive acoustic pa‐rameters ,four kinds of recognition results on characteristic parameters of hypernasality levels were obtained by using K‐nearest neighbor .The experimental results show influenced by cleft palate ,the best recognition rates is gained by using identification al‐gorithm of Mel cepstrum coefficient ,which has maximum correlation with cleft palate speech in clinical characteristics physically .
出处 《计算机工程与设计》 北大核心 2015年第6期1592-1597,共6页 Computer Engineering and Design
基金 国家自然科学基金青年基金项目(30900391)
关键词 腭裂语音 数学模型 基音频率 共振峰 能量 Mel倒频谱系数 K-最近邻算法 cleft palate speech mathematical model pitch formants energy MFCC KNN
  • 相关文献

参考文献11

  • 1陈仁吉.中国腭裂语音治疗的现状与思考[J].国际口腔医学杂志,2012,39(1):1-5. 被引量:44
  • 2Orozco JR, Uribe JA, Vargas JF. Operador de everglade Teager para la detecci6n de hipernasalidad en nifios con labio y paladar hendido [J]. Rev Tecno L6gicas, 2011 (2): 27-45.
  • 3Murillo S, Orozco JR, Vargas JF, et al. Automatic detection of hypemasality in children [G]. LNCS 6687: Springer Ber-lin/Heidelberg, 2011: 167-174.
  • 4Little M Costello D, Harries M. Objective dysphonia quanti- fication in vocal fold paralysis: Comparing nonlinear with classi- cal measures [J]. J Voice, 2011, 25 (1): 21-31.
  • 5Arias-Londofio JD, Godino-Llorente JI, Sfienz-Lech6n N, et at. Automatic detection of pathological voices using complexity measures, noise parameters and mel-cepstral coefficients [J]. IEEE Trans Bio-med Eng, 2011, 58 (2): 370-9.
  • 6Stephen A Zahorian, Hu Hongbing. A spectral/temporal method for robust fundamental frequency tracking [J]. J Aco- sutSocAm, 2008, 123 (6): 4559-4571.
  • 7Stephen A Zahorian, Princy Dikshit, Hu Hongbing. A spec- tral-temporal method for pitch tracking [C] //International Conference on Spoken Language Processing, 2006.
  • 8Maier A K, Honig F, Hacker C, et al. Automatic evaluation of characteristic speech disorders in children with cleh lip and palate [C] //gth Annual Conference on Speech Communication and Association, 2008: 1757-1760.
  • 9刘琦.语音信号短时能量及短时幅值对比分析[J].网络安全技术与应用,2011(9):78-79. 被引量:3
  • 10李玉鼎.语音信号特征提取中Mel倒谱系MFCC算法的讨论[J].高等函授学报(自然科学版),2012,25(4):78-80. 被引量:2

二级参考文献25

共引文献46

同被引文献24

  • 1李蓓,石冰,郑谦,蒙田,尹恒,鲁勇.腭裂畸形程度对腭裂语音影响的研究[J].华西口腔医学杂志,2007,25(1):55-57. 被引量:26
  • 2张志愿.口腔颌面外科学[M].北京:人民卫生出版社,2012.
  • 3He L, Zhang J, Liu Q, et al. Automatic evaluation of hypemas- ality based on a cleft palate speech database [J].J Med Syst, 2015, 39(5) :61.
  • 4Bautzer AP, Guedes ZC. Verification of the therapeutic process in cleft patients[J]. Codas, 2014, 26(6) :457-463.
  • 5Albustanji YM, Albustanji MM, Hegazi MM, et al. Prevalence and types of articulation errors in Saudi Arabic-speaking children with repaired cleft lip and palate [J].Int J Pediatr Otorhinolaryn- gol, 2014, 78(10) :1707-1715.
  • 6Yang Z, Fan J, Tian J, et al. Cepstral analysis of voice in chil- dren with velopharyngeal insufficiency after cleft palate surgery [J]. JVoice, 2014, 28(6) :789-792.
  • 7Schulz A, Bocklet T, Eysholdt U, et al. Validation of an auto- matic speech analysis in children with isolated cleft palate [ J ]. HNO, 2014, 62(7) :525-529.
  • 8Madahar A, Murray A, Orr R, et al. The long and winding road-- the journey of a cleft lip and palate patient part 1 [ J]. Dent Up- date, 2013, 40(10):791-794, 796-798.
  • 9Jahanbin A, Pahlavannezhad MR, Savadi M, et al. The effect of speech therapy on acoustic speech characteristics of cleft lip and palate patients: a preliminary study[J]. Spec Care Dentist, 2014, 34(2) :84-87.
  • 10Zajae DJ, Milholland S. Abrupt laryngeal engagement during stop plosive-vowel transitions in children with repaired cleft palate and adequate velopharyngeal closure: aerodynamic and sound pres- sure level evidence[J]. Cleft Palate Craniofac J, 2014, 51 (1) : 98-104.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部