期刊文献+

基于轮廓方向特征的头部特征识别 被引量:2

Method for Recognizing Human Head Based on Contour Directional Feature
在线阅读 下载PDF
导出
摘要 针对危险生产作业场所的定员管理问题,采用机器视觉技术对进出作业场所的人数进行在线、实时统计。首先引入纹理梯度算子,定义方向熵函数以获取人头轮廓的方向特征并对轮廓点进行编码;接着,基于标准圆的轮廓及其方向二元特征实现对人头轮廓的准确匹配;最后建立弧长置信度函数完成对人员目标的定位。在目标跟踪过程中,建立预测函数辅助人头运动轨迹的获取,最终根据运动轨迹线判断目标是否进入或离开生产作业场所。实验表明,提出的方法准确率在90%以上,具有良好的实用性与学术价值,对于确保安全生产具有重大现实意义。 A statistical method of headcount based on machine vision technology is proposed in the research, which is implemented in quota management in dangerous production place. The texture gradient operator is firstly introduced to define directional entropy fimction which is used to extract directional feature of head's contour and realize co,ltour coding. So,head's contour can be accurately matched based on standard circle's contour and directionality dual characteristic. And then, arc confidence function is finally constructed to complete the location of people. During the process of moving objective tracking, moving production function is set assisting to obtain head's moving trajectory. So whether the people enter or leave production place can be judged according to trajectory. Finally, the experiment proves the practical effectiveness and academic value of the method, the accuracy can reach 90% above. It is also very significant for safety in production.
出处 《电视技术》 北大核心 2015年第12期107-112,共6页 Video Engineering
基金 广东省重大科技专项计划项目(2012A080104012)
关键词 机器视觉 危险生产作业场所 定员 方向熵 弧长置信度 machine vision angerous production place quota management directional entropy are eonfidenee
  • 相关文献

参考文献17

  • 1BENABBAS Y, IHADDADENE N, YAHIAOUI T, et al. Spa- tio-temporal optical flow analysis for people counting [C]//Proc. of 7th IEEE International Conference on Advanced Video and Signal Based Sueillance. Boston, USA: IEEE Press, 2010: 212-217.
  • 2JAIJING K, KAEWTRAKULPONG P,SIDDHICHAI S. Object de- tection and modeling algorithm tbr automatic visual people count- ing system[C]//Proc. 6111 International Conference on Electrical Engineering/Electronic, Computer, Telecommunication and Infor- mation Technology. [S.l.] : IEEE Press, 2009 : 1062-1065.
  • 3顾骋,钱惟贤,陈钱,顾国华,任建乐.基于双目立体视觉的快速人头检测方法[J].中国激光,2014,41(1):150-155. 被引量:27
  • 4LU Huchuan, ZHANG Ruijuan, CHEN Yenwei. Head detection and tracking by mean-shift and kahnan fiter[C]//Prnc. 3rd Interna- tional Conference on Innovative Computing information and Con- trol.[S.l.] : IEEE Press, 2008 : 357-360.
  • 5赵军伟,侯清涛,李金屏,彭勃.基于数学形态学和HSI颜色空间的人头检测[J].山东大学学报(工学版),2013,43(2):6-10. 被引量:17
  • 6JAIJING K, KAEWTRAKULPONG P,SIDDHICHAI S. Object de-tection and modeling algorithm for automatic visual people count- ing system[C]//Proc. 6th International Conference on Electrical Engineering/Electronic, Computer, Telecommunication and Infor- mation Technology.[S.l.] : I EEE Press, 2009 : 1062-1065.
  • 7JIN Yonggang, MOKHTAR1AN F.Towards robust head tracking by particles[C]//Proc. IEEE International Conference on Image Processing. [S.1.]: IEEE Press, 2005 : 864-867.
  • 8于海滨,刘敬彪,刘济林.用于行人头部特征提取的目标区域匹配方法[J].中国图象图形学报,2009,14(3):482-488. 被引量:9
  • 9张海洋,陈国龙,李现伟.基于曲率尺度空间的人头检测方法研究[J].计算机工程与应用,2012,48(14):195-197. 被引量:8
  • 10文嘉俊,徐勇,战荫伟.基于AdaBoost和帧间特征的人数统计[J].中国图象图形学报,2011,16(9):1729-1735. 被引量:22

二级参考文献82

共引文献87

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部