期刊文献+

半群POP_n的理想的极大正则子半群 被引量:3

Maximal regular subsemigroups of the ideals of semigroup POP_n
在线阅读 下载PDF
导出
摘要 设Xn={1,2,…,n},并赋予自然序.POPn是Xn上的方向保序部分变换半群.对任意2≤r≤n-1,研究了半群POP(n,r)={α∈POPn:|im(α)|≤r}的极大正则子半群的结构,并利用Miller-Clifford定理,证明了半群POP(n,r)的极大正则子半群有且仅有一类,即Mα=POP(n,r-1)∪(Jr\Rα),α∈Jr,Jr={α∈POPn:|im(α)|=r},Rα表示α所在R-类. Let Xn : { 1,2,…, n }, ordered in the standard way. Let POPn be the partial orientationpreserving transformation semigroup on Xn. For an arbitrary integer r such that 2≤r≤n-1, the structures of the maximal regular subsemigroups of the semigroup POP(n,r)= {α∈ POPn :[ im(α) ≤ r} were studied. Using Miller-Clifford theorem,the authors have proved that POP(n,r) has exactly a class of maximal regular subsemigroups, Ma= POP (n, r- 1 ) U (Jr /Rs ), α ∈ J, where J = { α E POP. : Jim(α) I =r} ,Ra be the R-class containing α.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期31-34,共4页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11461014) 贵州省科学技术基金资助项目(黔科合J字[2013]2225号)
关键词 变换半群 方向保序 极大正则子半群 transformation semigroup orientation-preserving maximal regular semigroup
  • 相关文献

参考文献3

二级参考文献32

  • 1Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 2Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 3Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 4Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 5Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 6Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 7Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 8Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 9Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).
  • 10Evseev,A. E,Podronl N,E.Semigroups of transformations generated by idempotents of given defect, lzv.Vyssh. Uchebn. Zaved. Mat., 2(117), 44-50 (1972).

共引文献29

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部