期刊文献+

基于粒子滤波算法信息融合的磁悬浮列车定位研究 被引量:3

Maglev Train Position Detection Based on Information Fusion of Particle Filter Algorithm
在线阅读 下载PDF
导出
摘要 为提高磁悬浮列车的行车安全和效率,采用多传感器信息融合技术对中低速磁悬浮列车进行测速定位,以交叉感应回线测速定位和雷达传感器对进行相对定位,以查询应答器来实现绝对定位。利用粒子滤波算法对中低速磁悬浮列车测速定位的精度和可靠性进行分析,并用MATLAB仿真进行验证,证明该融合结构和融合算法能够提高列车的定位精度。 In order to improve the operation safety and efficiency of the maglev train, multi-sensor information fusion technology is adopted in low-speed maglev trains speed positioning. The relative positioning is realized by the radar and cross induction coil, and the absolute positioning is conducted by the balise. Particle filter algorithm is used to analyze the low-speed maglev train speed positioning accuracy and reliability, and MATLAB simulation is then adopted to verify the results. It maintains that the fusion structure and fusion algorithm effectively improve the positioning accuracy of the train by exploring the error effect caused by random noise.
出处 《华东交通大学学报》 2015年第3期12-15,113,共5页 Journal of East China Jiaotong University
基金 国家科技支撑计划项目(2013BAG19B01)
关键词 信息融合 测速定位 粒子滤波 查询应答器 information fusion speed and position detection particle filter balise
  • 相关文献

参考文献11

二级参考文献82

共引文献381

同被引文献36

  • 1黄晓生,黄萍,曹义亲,严浩.一种基于PCP的块稀疏RPCA运动目标检测算法[J].华东交通大学学报,2013,30(5):30-36. 被引量:3
  • 2蔡艳辉,程鹏飞,李夕银.用卡尔曼滤波进行GPS动态定位[J].测绘通报,2006(7):6-8. 被引量:45
  • 3NAOYA O, KENICHI K, KAZUHIRO K. Moving object detection from optical flow without empirical thresholds[J]. Ieice Transac- tions on Information & Systems, 1998 (2) :243-245.
  • 4SARVESH V,ANUPAM A. A survey on activity recognition and behavior understanding in video surveillance [J]. Vision Com- puter, 2013,29(10) :983-1008.
  • 5HARISH K D. Autonomous detection and tracking under illumination changes occlusions and moving camera [J]. Signal Processing, 2015,117:343--354.
  • 6FUKUNAGA T, KUBOTA S, ODA S, et al. GroupTracker: Video tracking system for multiple animals under severe occlusion[J]. Computational Biology & Chemistry, 2015,57 : 39-45.
  • 7FISHER R B. CAWIAR:context aware vision using image-based active recognition [EB/OL].[2011-11-01]. http://homepages.inf. ed.ae.uk/rbf/CAVIAR/eaviar.htm.
  • 8FISHER R B:Computer-assisted prescreen of video streams for unusual activities[EB/OL].[2011-11-01], http://homepages.inf.ed. ac.uk/rbf/BEHACE/.
  • 9RYO0 M S, AGGARWAL J K. ut-interaction dataset,ICPR contest on semantic description of human activities (SDHA)[EB/ 0L].[2012-02-01]. http://cvrc.ece.utexas.edu/SDHA2010/HumanInteraction.html.
  • 10IBARGUREN A,MAURTUA I,PEREZ M A,et al. Multiple target tracking based on particle filtering for safety in industrial robotic cells[J]. Robotics and Autonomous Systems, 2015,72:105-113.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部