期刊文献+

家庭智能空间下基于HMM的人轨迹分析方法 被引量:6

Human Trajectory Analysis Method Based on Hidden Markov Model in Home Intelligent Space
在线阅读 下载PDF
导出
摘要 对人行为的感知和预推理是家庭智能空间技术的关键环节.文中提出一种基于隐马尔可夫模型(HMM)的人轨迹分析方法.该方法首先将平面空间离散化为"瓷砖格",离线对各预设轨迹建立HMM模型.然后针对在线分析,提出一种类似滑动窗口的轨迹分割方案,该方案能实时有效地分割轨迹段,并适时激发轨迹匹配进程.最后智能空间依据匹配结果做出轨迹预测.实验表明,文中方法能有效预测人的轨迹,且满足实时性要求,有助于智能空间更好进行决策. Recognition and pre-reasoning of human activity is essential in home intelligent space. In this paper, an approach based on hidden markov model ( HMM) is proposed for human trajectory analysis. Firstly, the plan is discretized into tile blocks, and HMM models for human trajectories are set up off-line. Then, aiming at the online analysis, a sliding-window-like approach is put forward to achieve real-time trajectory segmentation and activate model matching process intelligently. Finally, a predicition of human trajectory is made by the intelligent space according to matching results. Experimental results show that the proposed approach achieves good performance in real-time trajectory analysis. Furthermore, the proposed approach can help home intelligent space make wiser decision.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第6期542-549,共8页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2009AA04Z220) 国家自然科学基金项目(No.61203341) 山东省自然科学基金项目(No.ZR2011FM011) 山东省高等学校科技发展计划项目(No.J11LG01)资助
关键词 智能空间 隐马尔可夫模型( HMM) 行为识别 轨迹分割 Intelligent Space, Hidden Markov Model (HMM), Activity Recognition, TrajectorySegmentation
  • 相关文献

参考文献15

  • 1Morris B T, Trivedi M M. A Survey of Vision-Based TrajectoryLearning and Analysis for Surveillance. IKEK Trans on Circuits andSystems for Video Technology, 2008,18(8) : 1114-1127.
  • 2Morris B T, Trivedi M M. learning Trajectory Patterns by Cluste-ring: Experimental Studies and Comparative Kvaluation // Proc* ofthe IEEE Conference on Computer Vision and Pattern Recognition.Miami, USA, 2009: 312-319.
  • 3Morris B T, Trivedi M M. Trajectory learning for Activity Un(Jer-standing: Unsupervised, Multilevel, and Iwong-Tenn Adaptive App-roach .IEKE Trans on Pattern Analysis and Machine Intelligence,2011, 33(11 ) : 2287-2301.
  • 4Beh J, Han I) K, Durasiwami K, et al. Hidden Markov Model on aUnit Hypersphere Space for Gesture Trajectory Recognition. PatlemRecognition letters, 2014, 36 : 144-153.
  • 5Li H J , Yi Y, hi X et al. Human Activity Recognition Based onHMM by Improved PSO and Event Probability Sequence. Journal ofSystems Engineering and Electmnics, 2013 , 24(3) ; 545-554.
  • 6Houenou A, Bonnifait P, Cherfaoui V,et al. Vehicle TrajectoryPrediction Based on Motion Model and Maneuver Kecognition //Proc of the IEKE/HSJ International Conference on Intelligent Holiotsand Systems. Tokyo, Japan, 2013 : 4363-4369.
  • 7Antonakaki P, Kosmopoulos D, Perantonis S J. Detei-ting AhnomialHuman Behaviour Using Multiple Cameras. Signal Processing,2009, 89(9) : 1723-1738.
  • 8Jiang M, Chen Y Y,Zhao Y Y, et al. A Real-Time Fall DetectionSystem Based on HMM and RVM // Ftxk- of the IEEE InternationalConference on Visual Communications and Image Processing. Ku-ching, Malaysia, 2013. DOI: 10. 1109/VCIP. 2013.6706385.
  • 9Panagiotakis C,Pelekis N, Kopanakis I, et al. Segmentation amiSampling of Moving Object Trajectories Based on Representative-ness. IKEE Trans on Knowledge and Data Kngineering, 2012, 24(7): 1328-1343.
  • 10田国会,李晓磊,赵守鹏,路飞.家庭服务机器人智能空间技术研究与进展[J].山东大学学报(工学版),2007,37(5):53-59. 被引量:37

二级参考文献74

共引文献52

同被引文献30

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部