期刊文献+

一种用于压缩感知理论的投影矩阵优化算法 被引量:11

Novel Optimization Method for Projection Matrix in Compress Sensing Theory
在线阅读 下载PDF
导出
摘要 考虑到投影矩阵对压缩感知(CS)算法性能的影响,该文提出一种优化投影矩阵的算法。该方法提出可导的阈值函数,通过收缩Gram矩阵非对角元的方法压缩投影矩阵和稀疏字典的相关系数,引入基于沃尔夫条件(Wolfe’s conditions)的梯度下降法求解最佳投影矩阵,达到提高投影矩阵优化算法稳定度和重构信号精度的目的。通过基追踪(BP)算法和正交匹配追踪(OMP)算法求解0l优化问题,用压缩感知方法实现随机稀疏向量、小波测试信号和图像信号的感知和重构。仿真实验表明,该文提出的投影矩阵优化算法能较大地提高重构信号的精度。 Considering the influence of the projection matrix on Compressed Censing (CS), a novel method is proposed to optimize the projection matrix. In order to improve the signal's reconstruction precise and the stability of the optimization algorithm of the projection matrix, the proposed method adopts a differentiable threshold function to shrink the off-diagonal items of a Gram matrix corresponding to the mutual coherence between the projection matrix and sparse dictionary, and introduces a gradient descent approach based on the Wolf's-conditions to solve the optimization projection matrix. The Basis-Pursuit (BP) algorithm and the Orthogonal Matching Pursuit (OMP) algorithm are applied to find the solution of the minimum 10 -norm optimization issue and the compressed sensing are utilized to sense and reconstruct the random vectors, wavelet's noise test signals and pictures. The results of the simulation show the proposed method based on the projection matrix optimization is able to improve the quality of the reconstruction performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第7期1681-1687,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61161010 11265001) 高等学校博士学科点专项科研基金(20133219110027)资助课题
关键词 压缩感知 相干性 基追踪算法 正交匹配追踪算法 Compressed Sensing (CS) Mutual coherence Basis-Pursuit (BP) algorithm Orthogonal Matching- Pursuit (OMP) algorithm
  • 相关文献

参考文献18

  • 1Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory., 2006, 52(1): 6-18.
  • 2Candes E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 3Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
  • 4郑红,李振.压缩感知理论投影矩阵优化方法综述[J].数据采集与处理,2014,29(1):43-53. 被引量:12
  • 5戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:217
  • 6Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5703.
  • 7Abolgha.:emi V, Ferdowsi S, and Sanei S. A gra:lient-based alternating minimization approach for optimization of the memsureraent matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.
  • 8李佳,王强,沈毅,李波.压缩感知中测量矩阵与重建算法的协同构造[J].电子学报,2013,41(1):29-34. 被引量:19
  • 9Zhang Qi-heng, Fu Yu-li, Li Hai-feng, et al: Optimized projection matrix for compressed sensing[J]. Circuit System Signal Processing, 2014, 33(5): 1627 1636.
  • 10Xu Jian-ping, Pi Yi-ming, and Cao Zong-jie projcction matrix for compressive, sensing[J] Jour:tal on Advances in Signal Processing 10.1155/2010/560349. Optimized EURASIP 2010, DOI:.

二级参考文献120

  • 1Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 3Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 4Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 5Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 6Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 7Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 8Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 9Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.
  • 10Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit.SIAM Journal on Scientific Computing,2001,43(1):129-159.

共引文献270

同被引文献64

  • 1薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:205
  • 2YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
  • 3HO J, LEE K C, YANG M H, et al. Visual tracking using learned linear subspaces[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 782-789.
  • 4LEE K C and KRIEGMAN D. Online learning of probabilistic appearance manifolds for video-based recognition and tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 852-859.
  • 5ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2013, 77(3): 125-141.
  • 6LATHAUWER L, MOOR B, and VANDEWALLE J. On the best rank-1 and approximation fhigherorder tensors[J]. SIAM Journal of Matrix Analysis and Applications, 2000, 21(4): 1324-1342.
  • 7LI X, HU W, ZHANG Z, et al. Visual tracking via incremental Log-Euclidean Riemannian sub-space learning [C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 578-585.
  • 8LI X, HU W, ZHANG Z, et al. Robust visual tracking based on incremental tensor subspace learning[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 1008-1016.
  • 9CLAUSI D A and DENG H. Design-based texture Feature using Gabor filters and co-occurrence probabilities[J]. IEEE Transactions on Image Processing, 2005, 14(7): 925-936.
  • 10KHAN Z H and GUI Y H. Online domain-shift learning and object tracking based on nonlinear dynamic models and particle filters on Riemannian manifolds[J]. Computer Vision and Image Understanding, 2014, 15(6): 97-114.

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部