期刊文献+

中国和印度股市波动性的比较研究 被引量:5

Study on China and India's Stock Market Variability
在线阅读 下载PDF
导出
摘要 作为"金砖四国"中的成员,中印两国股票市场具有较强的可比性。比较分析金融危机发生后两国的股市波动性特征,对中国股市发展具有理论和现实双重借鉴意义。文章利用ARCH族模型对上证综合指数和印度孟买30指数日收盘价数据展开实证研究,比较解析金融危机发生后中印两国的股市波动性特质,分析表明可变性和波动集簇性是两国收益率波动均呈现出的明显特质,而且印度比中国有更强的显示度;此外,中印两国股市收益正的风险溢价表现不显著;杠杆效应在上证综合指数收益率和印度孟买30指数收益率中均有体现,而且杠杆效应在印度股市的影响要高于中国股市。这对于确保中国股票和证券市场持续、稳定、强劲发展具有显著的理论说服力及重大的实践意义。 As the members of "BRIC", China and India are highly correlated and there is strong comparability between the two countries' stock market. The comparative analysis of the financial crisis after the stock market volatility characteristics of China and India is of important theoretical and realistic significance for the development of Chinese stock market. This paper makes use of ARCH model to research the characteristics of SSE Index and SENSEX volatility during the period January 2 of 2008 to April 17 of 2013. The paper conducts the comparative analysis of the financial crisis after the stock market volatility characteristics of China and India and the results show that there are obvious characteristics of variability and volatility cluster between the daily return rate of SSE Index and SENSEX , the cohesion and persistence of the volatility in India's stock market is much stronger than that in China; Neither China's stock market nor India's stock market have positive risk premium; both of the daily return rate of SSE Index and SENSEX have characteristics of leverage effect, and the leverage effect in India's stock market is much bigger than in China. It is of great theoretical and practical significance in ensuring the continuous, stable and steady development of the stock market in China.
作者 李涛 姜思云
出处 《技术经济与管理研究》 CSSCI 北大核心 2015年第7期95-99,共5页 Journal of Technical Economics & Management
基金 中国博士后科学基金特别资助项目(2014T70849) 中国博士后科学基金面上资助项目(2013M542256) 重庆市博士后科研特别资助项目(Xm2014008)
关键词 GARCH模型 股票市场 金融风险 金融管理 GARCH model The stock market Financial risk Financial management
  • 相关文献

参考文献14

  • 1Engle, Robert F. Autoregressive Conditional Heteroskedasticity with Esti- mate of the Variance of U.K. Inflation [Jl.Ecomometrica, 1982(50): 987- 1008.
  • 2Bollersleve,Tim. Generalized Autoregressive Conditional Heteroskedastie- ity [J].Journal of Econometrics, 1986(31):307-327.
  • 3Engle,R.F. mad Ng V.K. Measuring and testing the impact of news on vol- atility [J].Journal of Finance, 1993(48): 1749-1778.
  • 4Tan fiq Choudhry. Integrate d-GARCH and Non-stationary Variances: Evidence from European Stock Markets during the 1920s mad 1930s [J]. Economies Letters, 1995(1): 55-59.
  • 5Basel M.A. Awartani,Valentina Corradi. Predicting the Volatility of the S&P500 Stock Index via GARCH Models:the Role of Asymmetries [J]. International Journal of Forecasting, 2005(1 ): 167-183.
  • 6Girard, R.Biswas. Trading Volume and Market Volatility: Developed versus Emerging Stock Markets [J].The Financial Review,2007(42):429-459.
  • 7Jui-Chung Hung. A Fuzzy Asymmetric? GARCH Model Applied to Stock Markets [J].Information Sciences,2009(22):3930-3943.
  • 8Md.Sabiruzzaman, etc.. Modeling and Forecasting Trading Volume Index: GARCH versus TGARCH Approach [J].The Quarterly Review of Economics and Finance, 2010(2) : 141-145.
  • 9Hung-Chun Liu ,Jui-Cheng Hung. Forecasting S&P-IO0 Stock Index Vo- latility: The Role of Volatility Asymmetry and Distributional Assumption in GARCH Models [J].Expert Systems with Applications, 2010(7): 4928-4934.
  • 10徐剑刚,唐国兴.我国股票市场报酬与波动的GARCH-M模型[J].数量经济技术经济研究,1995,12(12):28-32. 被引量:32

二级参考文献56

共引文献92

同被引文献32

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部