期刊文献+

不确定性数据的超球支持向量机分类方法 被引量:2

Classification method for uncertainty data based on hyper-sphere support vector machine
在线阅读 下载PDF
导出
摘要 针对区间不确定性数据的分类问题,提出一种基于超球支持向量机的多分类方法。采用超椭球凸集模型描述数据的不确定性信息;建立超球支持向量机的不确定约束规划模型,将其转化为两层嵌套约束规划问题;通过上下两层子优化交替迭代寻优的方法求解最优超球面,利用泰勒展开法,直接推导下层子优化线性近似问题的最优解,以降低计算复杂度。实验结果表明,该方法具有较高的分类精度及较好的抗噪性和鲁棒性,适合解决区间不确定性数据多分类问题。 Aiming at the problem of multi-classification for interval uncertainty data,a method based on hyper-sphere support vector machine(HSVM)was proposed.Firstly,uncertainty information of interval data was described using ellipsoidal convex model.Secondly,uncertainty constraint programming model of HSVM was established and converted to bi-level constraint programming problem.Finally,the optimization hyper-sphere of classification problem was obtained by alternating iterative optimization of the two sub optimization problems including upper and lower,and the approximate optimal solution of lower-sub optimization was directly derived using Taylor expansion.Experimental results show that this proposed method makes a better accuracy and has strong robustness for noise.It is effectively suitable for multi-class classification with data uncertainty.
出处 《计算机工程与设计》 北大核心 2015年第7期1778-1783,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(41362015) 江西省自然基金项目(20122BAB201045)
关键词 区间不确定性数据 超球支持向量机 超椭球凸集模型 非线性两层规划 分类 interval uncertainty data hyper-sphere support vector machine hyper-ellipsoid convex model nonlinear bi-level programming classification
  • 相关文献

参考文献13

  • 1Aggarwal CC, Yu PS. A survey of uncertain data algorithms and applications [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (5): 609-623.
  • 2周傲英,金澈清,王国仁,李建中.不确定性数据管理技术研究综述[J].计算机学报,2009,32(1):1-16. 被引量:185
  • 3Tsang S, Kao B, Yip KY, et al. Decision trees for uncertain data [J]. IEEE Transactions on Knowledge and Data Enginee- ring, 2011, 23 (1): 64-78.
  • 4REN Jiangtao, LEE SD, CHEN Xialu, et al. Naive bayes classification of uncertain data [C] //Ninth IEEE International Conference on Data Mining, 2009: 944-949.
  • 5QIN Biao, XIA Yuni, WANG Shan, et al. A novel Bayesian classification for uncertain data [J]. Knowledge-Based Sys- tems, 2011, 24 (8): 1151-1158.
  • 6QIN Biao, XIA Yuni, Prabhakar S, et al. A rule-based clas- sification algorithm for uncertain data [C] //IEEE 25th Inter- national Conference on Data Engineering, 2009: 1633-1640.
  • 7YANG Jianqiang. Classification under input uncertainty with support vector machines [D]. Southampton: University of Southampton, 2009.
  • 8邓世飞,齐丙娟,谭艳红.支持向量机理论与算法研究综述口].电子科技大学,2011,40(1):2-10:
  • 9艾青,秦玉平,李迎春.基于超球支持向量机的多主题文本分类算法[J].计算机工程与设计,2010,31(10):2273-2275. 被引量:5
  • 10李为相,李帮义.一种基于支持向量域描述的区间数分类[J].系统科学与数学,2012,32(3):319-326. 被引量:1

二级参考文献147

共引文献190

同被引文献59

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部