期刊文献+

不同结构住宅建筑碳排放流的模拟研究 被引量:15

Simulation of Carbon Emission Flow for Residential Buildings of Different Structures
原文传递
导出
摘要 为探寻不同结构住宅建筑全生命周期碳排放的差异,本文基于全寿命周期理论,在对国内外已有的建筑碳排放测算结果归一化的基础上,构建了静态及动态的建筑碳排放流模型,应用该模型模拟研究了混凝土结构、钢结构及木结构3种结构住宅建筑在全生命周期的碳排放流,其中包括隐含碳排放期阶段、建筑运营期阶段、建筑废弃及回收期阶段的碳排放流。研究结果表明:1)3种结构住宅建筑全生命周期的静态碳排放流量由大到小依次为钢结构住宅建筑的碳排放流量(1849)、混凝土结构住宅建筑的碳排放流量(1 778)、木结构住宅建筑的碳排放流量(1 230);2)3种结构住宅建筑全生命周期各阶段的时点碳排放流比较结果:隐含碳排放期阶段碳排放流由大到小依次为钢结构住宅建筑碳排放流(451)、混凝土结构住宅建筑碳排放流(378),木结构住宅建筑的碳排放流(172);建筑运行期阶段碳排放流由大到小依次为钢结构住宅建筑碳排放流(29)、混凝土结构住宅建筑碳排放流(28),木结构住宅建筑的碳排放流(26);废弃及回收期阶段碳排放流主要表现为负碳排放,钢结构建筑和木结构的负碳排放流量相近,分别为-52、-53,凝土结构的负碳排放流为-0.3,几乎可以忽略。 In order to explore the differences of carbon emission in the full life circle of residential buildings of different structures,this paper sets up static and dynamic building carbon emission flow models,after normalization of the existing measuring results of building carbon emission at home and abroad,based on the theory of full life circle. Then,the model is adopted to study the carbon emission flow of three kinds of residential building structures,namely,concrete structure,steel structure,and wooden structure in the full life circle,including the implicit carbon emission stage,building operation stage,and building abandonment and recycling stage. The research results indicate that: 1) ranking of the static carbon emission amount of three structures in the full life circle in descending order: steel structure residential building carbon emission( 1 849),concrete structure residential building carbon emission( 1 778),wooden structure residential building carbon emission( 1 230); 2)ranking of the dynamic carbon emission amount of three structures in the full life circle in descending order: a)implicit carbon emission stage: steel structure residential building carbon emission( 451),concrete structure residential building carbon emission( 378),wooden structure residential building carbon emission( 172); b)building operation stage: steel structure residential building carbon emission( 29),concrete structure residential building carbon emission( 28), wooden structure residential building carbon emission( 26); c) building abandonment and recycling stage: mainly negative carbon emission; steel structure building carbon emission(-52),wooden structure building carbon emission(- 53),concrete structure building carbon emission(- 0. 3),which is almost negligible.
出处 《建筑科学》 CSCD 北大核心 2015年第6期26-34,共9页 Building Science
基金 国家自然科学基金项目"LCA视角下宏观建筑碳排放结构特性 演化机理及区域化减排机构研究"(71303082) 教育部人文社会科学规划青年基金项目"不同结构建筑碳排放流模拟及优化--基于工程经济学的视角"(13YJCZH194) 浙江农林大学人才引进项目(2012FR029)
关键词 碳排放流 混凝土结构 钢结构 木结构 模拟 carbon emission flow concrete structure steel structure wooden structure simulation
  • 相关文献

参考文献29

  • 1Bfinnel V, Munstermann S, Bleck W, et al. Sturctural requirements and material solutions for sustainable buildings[ J ]. Revue de M etallurgie, 2013,110 : 37-46.
  • 2Alcoru J A, Baird G. Use of a hybrid energy analysis method for evaluating the embodied energy of building materials [ J ]. Renewable Energy, 1996,8 ( 1-4 ) :319-322.
  • 3Buchanan A H, Honey B G. Energy and carbon dioxide implications of building construction[J]. Energy and Buildings, 1994,20(3) :205-217.
  • 4BjOrklund T, Jinsson A, Tillman A M. LCA of building frame structures: environmental impact over the life cycle of concrete and steel frames [ J ]. International Journal of Life Cycle Assessment, 1998, 3 (4) :216-224.
  • 5Lawson W. Embodied energy of building materials [ D ]. Melbourne : Royal Australian Institute of Architects, 1995.
  • 6Canadian Wood Council (CWC). Life cycle analysis for residential buildings [ EB/OL ]. 1994-2000. http://www, cwc. ca/ publications/tech_bulletins/tech_bull_5/html.
  • 7Guggemos A A, Horvath A. Comparison of environmental effects of steel- and concrete-framed buildings [ J ]. Journal of Infrastructure Systems, 2005, 11 (2) :93-101.
  • 8Arima T. Wood construction as "Urban Forest Reserves" [ C ]// llth World Conference on Timber Engineering. Italy: Trentino, 2010.
  • 9Li S-H. Embodied environmental burdens of wood structure in Taiwan compared with reinsforeed concrete and steel structures with various recovery rates [ J ]. Applied Mechanics and Materials, 2012, 174:202-210.
  • 10Rossi B,Anne-Francoise M, Sigrid R. Life-cycle assessment of residential building in three different European locations, case study[ J]. Building and Environment, 2012, 51 (5) : 402-407.

二级参考文献100

共引文献163

同被引文献118

  • 1胡姗,张洋,燕达,郭偲悦,刘烨,江亿.中国建筑领域能耗与碳排放的界定与核算[J].建筑科学,2020,36(S02):288-297. 被引量:83
  • 2王强,刘英哲,李鹏,徐扬,牛彦平,韩志攀.不同流速对能量桩系统除冰效果的影响研究[J].建筑结构,2022,52(S02):2530-2534. 被引量:2
  • 3李斯涛,刘志强,李培锋,李春,王丹.高速公路服务区低碳生态技术体系探讨[J].公路交通科技,2020,37(S02):56-61. 被引量:18
  • 4韩根生,倪栋,邵社刚.智慧化、海绵化、低碳化的绿色服务区建设理念探讨[J].公路交通科技(应用技术版),2020(3):346-348. 被引量:10
  • 5Tol R S J. The marginal costs of carbon dioxide emissions: An assessment of the uncertainties [J]. Energy Policy, 2003, 33(16): 2064-2074.
  • 6Stern N. The stern review on the economic effects of climate change [J]. Population and Development Review, 2006, 32(4): 793-798.
  • 7Hope C. Critical issues for the calculation of the social cost of CO2: Why the estimates from PAGE09 are higher than those from PAGE2002 [J]. Climatic Change, 2013, 117(3): 531-543.
  • 8Klaassen R E, Patel M K. District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power) [J]. Energy, 2013, (54): 63-73.
  • 9Oliva H S, MacGill I, Passey R. Estimating the net societal value of distributed household PV systems [J]. Solar Energy, 2014, 100: 9-22.
  • 10Frank A, Elizabeth A S. Climate risks and carbon prices: Revising the social cost of carbon [J]. economics, 2011, 6(10): 1-27.

引证文献15

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部