期刊文献+

热处理对挤压成形TC18钛合金管材组织和性能的影响 被引量:4

Influence of Heat Treatment Process on Microstructures and Mechanical Properties of Hot-extruded TC18 Tube
在线阅读 下载PDF
导出
摘要 航空气瓶要求其制作材料抗拉强度在1 080~1 280 MPa之间,屈服强度≥1 010 MPa,延伸率≥10%,断面收缩率≥35%。采用两相区固溶+时效和双重固溶+时效两种工艺,对航空气瓶用的热挤压成形TC18钛合金管进行热处理,研究了热处理制度对材料显微组织和力学性能的影响,探讨了它们之间的影响规律。结果表明,采用固溶+时效热处理获得弥散分布的针状α相,而双重固溶+时效获得片层α相和等轴α相;随着时效温度的升高,两种工艺处理的组织中初生α相均明显减少。采用固溶+时效和双重固溶+时效热处理,合金的力学性均能满足航空气瓶对材料的要求。 The aviation gas cylinder raises higher demands for the strength and ductility of the material. Demand of tensile strength Rm is between 1 080 MPa to 1 280 MPa, yield strength Rr0.2 is over 1 010 MPa, elongation A is over 10%, reduction of area Z is over 35%. With the solution-aging treatment and double solution-aging treatment for hotextruded φ170 mm × 30 mm xL TC18 alloy aviation gas cylinder, the effects of heat treatment process on the micro- structure and mechanical properties of the material were studied in this paper, and the laws of influence were discussed. It is found that diffuse distribution of acicular α phase is obtained after solution-aging treatment, but equiaxed α phase is obtained after double solution-aging treatment. Primary α phase decrease significantly with the development of aging temperatures during both heat treatments. With the solution-aging treatment and double solution-aging treatment, strength and ductility of the alloy are both able to meet the operating requirements of the aviation gas cylinder.
出处 《钛工业进展》 北大核心 2015年第4期22-24,共3页 Titanium Industry Progress
关键词 TC18钛合金 拉伸性能 固溶时效 热处理 TC18 alloy tensile properties solution and aging heat treatment
  • 相关文献

参考文献4

二级参考文献34

  • 1于兰兰,毛小南,张鹏省,赵永庆,袁少冲.热处理工艺对BT22钛合金组织和性能的影响[J].稀有金属快报,2005,24(3):21-23. 被引量:26
  • 2沙爱学,李兴无,王庆如,鲍如强.热变形温度对TC18钛合金显微组织和力学性能的影响[J].中国有色金属学报,2005,15(8):1167-1172. 被引量:45
  • 3孟笑影,庞克昌,殷俊林.热处理工艺对TC18钛合金组织和性能的影响[J].热处理,2006,21(1):36-39. 被引量:31
  • 4于兰兰,毛小南,赵永庆,张鹏省,袁少冲.热变形行为与BT22钛合金的组织演变[J].稀有金属材料与工程,2007,36(3):505-508. 被引量:24
  • 5Nyakana S L, et al. Quik reference guide for β titanium alloys in the 00'S[J]. J Mater Eng Perform, 2005,14(6) : 799.
  • 6Polkin S , Rodionov V L, et al. Structure and mechanical properties of VT22 (a +β) high strength titanium alloy semiproducts[C]//Froes I H, Caplan I. Titanium'92: Science and Technology. San Diego: TMS, 1992:1569.
  • 7Donachie M I. Titanium.. A technical guide[M]. Metals Park: ASM International, 1988.
  • 8Boyer P R. Application of beta titanium alloys in airframes [R]. Beta Titanium Alloys 1990's Titanium Committee TMS, 2003 : 333.
  • 9Yair Bruhis, et al. High performance mil-ling in aerospace material[C]//Meeting the Continuous Challenges of Machining New Innovative Material. Amherst, 2008.
  • 10Boyer R R, et al. The use of β titanium alloys in the aerospace industry[J]. J Mater Eng Perform, 2005,14(6): 681.

共引文献70

同被引文献10

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部